Learn More
Training a support vector machine SVM leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large learning tasks with many training examples, oo-the-shelf(More)
This paper explores the use of Support Vector Machines (SVMs) for learning text classiiers from examples. It analyzes the particular properties of learning with text data and identiies why SVMs are appropriate for this task. Empirical results support the theoretical ndings. SVMs achieve substantial improvements over the currently best performing methods and(More)
(1985). A learning algorithm for boltzmann machines. (2010). Learning the structure of deep sparse graphical models. In AI/Statistics. On tight approximate inference of the logistic-normal topic admixture model. In AI/Statistics.ference using message propoga-tion and topology transformation in vector Gaussian continuous networks. In UAI. Bayesian analysis(More)
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for high-dimensional sparse data commonly encountered in applications like text classification, word-sense disambiguation, and drug design. These applications involve a large number of examples <i>n</i> as well as a large number of features <i>N</i>,(More)
The Rocchio relevance feedback algorithm is one of the most popular and widely applied learning methods from information retrieval. Here, a probabilistic analysis of this algorithm is presented in a text categorization framework. The analysis gives theoretical insight i n to the heuristics used in the Roc-chio algorithm, particularly the word weight-ing(More)
Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernel-based methods has focused on designing flexible and powerful input representations. This paper addresses the complementary issue of problems involving complex outputs such as multiple dependent output variables and structured output spaces. We(More)
This paper examines the reliability of implicit feedback generated from clickthrough data in WWW search. Analyzing the users' decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but biased. While this makes the interpretation of clicks as absolute relevance judgments(More)