Learn More
Proteins modified by multiubiquitin chains are the preferred substrates of the proteasome. Ubiquitination involves a ubiquitin-activating enzyme, E1, a ubiquitin-conjugating enzyme, E2, and often a substrate-specific ubiquitin-protein ligase, E3. Here we show that efficient multiubiquitination needed for proteasomal targeting of a model substrate requires(More)
Processing of integral membrane proteins in order to liberate active proteins is of exquisite cellular importance. Examples are the processing events that govern sterol regulation, Notch signaling, the unfolded protein response, and APP fragmentation linked to Alzheimer's disease. In these cases, the proteins are thought to be processed by regulated(More)
The OLE pathway of yeast regulates the level of the ER-bound enzyme Delta9-fatty acid desaturase OLE1, thereby controlling membrane fluidity. A central component of this regulon is the transcription factor SPT23, a homolog of mammalian NF-kappaB. SPT23 is synthesized as an inactive, ER membrane-anchored precursor that is activated by regulated(More)
The accumulation of the human tumor suppressor 53BP1 at DNA damage sites requires the ubiquitin ligases RNF8 and RNF168. As 53BP1 recognizes dimethylated Lys20 in histone H4 (H4K20me2), the requirement for RNF8- and RNF168-mediated ubiquitylation has been unclear. Here we show that RNF8-mediated ubiquitylation facilitates the recruitment of the AAA-ATPase(More)
Selective protein degradation by the 26S proteasome requires the covalent attachment of several ubiquitin molecules in the form of a multiubiquitin chain. Ubiquitylation usually involves three classes of enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2) and a ubiquitin ligase (E3). However, in some cases, multiubiquitylation(More)
Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations(More)
Protein degradation in eukaryotes often requires the ubiquitin-selective chaperone p97 for substrate recruitment and ubiquitin-chain assembly. However, the physiological relevance of p97, and its role in developmental processes, remain unclear. Here, we discover an unanticipated function for CDC-48/p97 in myosin assembly and myofibril organization, both in(More)
Since cdc48 mutants were isolated by the first genetic screens for cell division cycle (cdc) mutants in yeast, the requirement of the chaperone-like ATPase Cdc48/p97 during cell division has remained unclear. Here, we discover an unanticipated function for Caenorhabditis elegans CDC-48 in DNA replication linked to cell cycle control. Our analysis of the(More)
The Mediator is a conserved transcriptional coregulator complex required for eukaryotic gene expression. In Caenorhabditis elegans, the Mediator subunit mdt-15 is essential for the expression of genes involved in fatty acid metabolism and ingestion-associated stress responses. mdt-15 loss of function causes defects in reproduction and mobility and shortens(More)
Ubiquitination plays a crucial role in neurodevelopment as exemplified by Angelman syndrome, which is caused by genetic alterations of the ubiquitin ligase-encoding UBE3A gene. Although the function of UBE3A has been widely studied, little is known about its paralog UBE3B. By using exome and capillary sequencing, we here identify biallelic UBE3B mutations(More)