Thorsten Frenzel

Learn More
Respiratory motion degrades anatomic position reproducibility and leads to issues affecting image acquisition, treatment planning, and radiation delivery. Four-dimensional (4D) computer tomography (CT) image acquisition can be used to measure the impact of organ motion and to explicitly account for respiratory motion during treatment planning and radiation(More)
PURPOSE The practice of surgical staging and treatment of anal cancer has been replaced by noninvasive staging and combined modality therapy. For appropriate patient management, accurate lymph node staging is crucial. The present study evaluated the feasibility and diagnostic accuracy of contrast-enhanced [(18)F]fluoro-2-deoxy-d-glucose(More)
The mobility of lung tumours during the breathing cycle is a source of error in radiotherapy treatment planning. Spatio-temporal CT data sets can be used to measure the movement of lung tumours caused by breathing. Because modern CT scanners can only scan a limited region of the body simultaneously at different times, patients have to be scanned in segments(More)
To determine the detection rate of PET/CT in biochemical relapse of prostate cancer using [68Ga]PSMA I&T and to compare it with published detection rates of [68Ga]PSMA HBED-CC. We performed a retrospective analysis in 83 consecutive patients with documented biochemical relapse after prostatectomy. All patients underwent whole body [68Ga]PSMA I&T PET/CT.(More)
In this publication, a three-dimensionally movable motion phantom is described and its performance characteristics are evaluated. The intended primary fields of application for the phantom are the quality assurance (QA) of respiratory motion management devices in radiation therapy (RT) like gating or tumour tracking systems, training for clinical use of(More)
The development of 4D CT imaging has introduced the possibility of measuring breathing motion of tumors and inner organs. Conformal thoracic radiation therapy relies on a quantitative understanding of the position of lungs, lung tumors, and other organs during radiation delivery. Using 4D CT data sets, medical image computing and visualization methods were(More)
PURPOSE Breathing-induced motion effects on dose distributions in radiotherapy can be analyzed using 4D CT image sequences and registration-based dose accumulation techniques. Often simplifying assumptions are made during accumulation. In this paper, we study the dosimetric impact of two aspects which may be especially critical for IMRT treatment: the(More)
Die nichtinvasive Thermometrie ist für die klinische und technologische Weiterentwicklung der regionalen Hyperthermie auf Dauer unverzichtbar. Bei der magnetischen Resonanztomographie werden T1-Relaxationszeit, Diffusion und Protonenresonanzfrequenz für die Messung von Temperaturverteilungen ausgenutzt. Alle diese Verfahren sind bei einer klinischen(More)
Future progress in regional hyperthermia requires a practical method for non-invasive thermometry. In magnetic resonance tomography, spin density, T1 relaxation time, diffusion coefficient and proton resonance frequency are candidates to measure temperature distributions. When used clinically in the pelvic region, all these methods are compromized by(More)