Learn More
Overexpression of the proto-oncogene c-myc has been implicated in the genesis of diverse human tumours. c-Myc seems to regulate diverse biological processes, but its role in tumorigenesis and normal physiology remains enigmatic. Here we report the generation of an allelic series of mice in which c-myc expression is incrementally reduced to zero. Fibroblasts(More)
A search for general regulators of cancer metastasis has yielded a set of microRNAs for which expression is specifically lost as human breast cancer cells develop metastatic potential. Here we show that restoring the expression of these microRNAs in malignant cells suppresses lung and bone metastasis by human cancer cells in vivo. Of these microRNAs,(More)
Cancer cells that leave the primary tumor can seed metastases in distant organs, and it is thought that this is a unidirectional process. Here we show that circulating tumor cells (CTCs) can also colonize their tumors of origin, in a process that we call "tumor self-seeding." Self-seeding of breast cancer, colon cancer, and melanoma tumors in mice is(More)
Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are(More)
The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response(More)
Ideas about stem cells, and how they behave, have been undergoing a lot of change in recent years, thanks to developments in visualizing, monitoring, and manipulating cells and tissues. Curious to find out what impact these changes are having on one of the most enduring and widely accepted metaphors in stem cell biology – the idea of the stem cell niche –(More)
Metastatic niches support the survival and fitness of disseminated tumour cells (DTCs) in otherwise inhospitable tissue environments. The components of metastatic niches have remained a matter of conjecture, but recent reports, including one in a current issue of Nature, point at the extracellular matrix (ECM) proteins periostin and tenascin C (TNC) as key(More)
The extracellular matrix protein tenascin C (TNC) is a large glycoprotein expressed in connective tissues and stem cell niches. TNC over-expression is repeatedly observed in cancer, often at the invasive tumor front, and is associated with poor clinical outcome in several malignancies. The link between TNC expression and poor survival in cancer patients(More)
  • 1