Learn More
Future interactive entertainment applications will featurethe physical simulation of thousands of interacting objectsusing explosions, breakable objects, and cloth effects. Whilethese applications require a tremendous amount of performanceto satisfy the minimum frame rate of 30 FPS, there is a dramatic amount of parallelism in future physics workloads.How(More)
The error tolerance of human perception offers a range of opportunities to trade numerical accuracy for performance in physics-based simulation. However, most prior work on perceptual error tolerance either focus exclusively on understanding the tolerance of the human visual system or burden the application developer with case-specific implementations such(More)
Common components of whole-cell internal recording solutions were tested both in vitro and in patch-clamp experiments for their effects on the activity of cAMP-dependent protein kinase. Potassium fluoride (KF), 440 mM trimethylamine chloride and exclusion of bovine serum albumin (BSA) decreased the activity of the enzyme, while ethylene glycol-bis(More)
Physics-based animation has enormous potential to im- prove the realism of interactive entertainment through dy- namic, immersive content creation. Despite the massively parallel nature of physics simulation, fully exploiting this parallelism to reach interactive frame rates will require significant area to place the large number of cores. For- tunately,(More)
Interactive entertainment has long been one of the driving factors behind architectural innovation, pushing the boundaries of computing to achieve ever more realistic virtual experiences. Future entertainment applications will feature robust physics modeling to enable on-the-fly content creation. However, application designers must provide at least 30(More)
  • 1