Thomas Wischgoll

Learn More
The analysis and visualization of flows is a central problem in visualization. Topology based methods have gained increasing interest in recent years. This article describes a method for the detection of closed streamlines in flows. It is based on a special treatment of cases where a streamline reenters a cell to prevent infinite cycling during streamline(More)
The morphometry (diameters, length, and angles) of coronary arteries is related to their function. A simple, easy, and accurate image-based method to seamlessly extract the morphometry for coronary arteries is of significant value for understanding the structure-function relation. Here, the morphometry of large (> or = 1 mm in diameter) coronary arteries(More)
The blood flow in the myocardium has significant spatial heterogeneity. The objective of this study was to develop a biophysical model based on detailed anatomical data to determine the heterogeneity of regional myocardial flow during diastole. The model predictions were compared with experimental measurements in a diastolic porcine heart in the absence of(More)
The branching pattern of epicardial coronary arteries is clearly three-dimensional, with correspondingly complex flow patterns. The objective of the present study was to perform a detailed hemodynamic analysis using a three-dimensional finite element method in a left anterior descending (LAD) epicardial arterial tree, including main trunk and primary(More)
The paper presents a topology-based visualization method for time-dependent two-dimensional vector fields. A time interpolation enables the accurate tracking of critical points and closed orbits as well as the detection and identification of structural changes. This completely characterizes the topology of the unsteady flow. Bifurcation theory provides the(More)
An accurate analysis of the spatial distribution of blood flow in any organ must be based on detailed morphometry (diameters, lengths, vessel numbers, and branching pattern) of the organ vasculature. Despite the significance of detailed morphometric data, there is relative scarcity of data on 3D vascular anatomy. One of the major reasons is that the process(More)
Closed streamlines are a missing part in most visualizations of vector field topology. In this paper, we propose a method which detects closed streamlines in a time-dependent two-dimensional flow and investigates the behavior of these closed streamlines over time. We search in all timesteps for closed streamlines and connect them to each other in temporal(More)
The complexity of the coronary circulation especially in the deep layers largely evades experimental investigations. Hence, virtual/computational models depicting structure-function relation of the entire coronary vasculature including the deep layer are imperative. In order to interpret such anatomically based models, fast and efficient visualization(More)