Thomas Wiegand

Learn More
With the introduction of the H.264/AVC video coding standard, significant improvements have recently been demonstrated in video compression capability. The Joint Video Team of the ITU-T VCEG and the ISO/IEC MPEG has now also standardized a Scalable Video Coding (SVC) extension of the H.264/AVC standard. SVC enables the transmission and decoding of partial(More)
High Efficiency Video Coding (HEVC) is currently being prepared as the newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of the HEVC standardization effort is to enable significantly improved compression performance relative to existing standards-in the range of 50% bit-rate(More)
Context-Based Adaptive Binary Arithmetic Coding (CABAC) as a normative part of the new ITU-T/ISO/IEC standard H.264/AVC for video compression is presented. By combining an adaptive binary arithmetic coding technique with context modeling, a high degree of adaptation and redundancy reduction is achieved. The CABAC framework also includes a novel(More)
H.264/AVC is newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goals of the H.264/AVC standardization effort have been enhanced compression performance and provision of a “network-friendly” video representation addressing “conversational” (video telephony) and “nonconversational”(More)
A unified approach to the coder control of video coding standards such as MPEG-2, H.263, MPEG-4, and the draft video coding standard H.264/AVC is presented. The performance of the various standards is compared by means of PSNR and subjective testing results. The results indicate that H.264/AVC compliant encoders typically achieve essentially the same(More)
An experimental analysis of multiview video coding (MVC) for various temporal and inter-view prediction structures is presented. The compression method is based on the multiple reference picture technique in the H.264/AVC video coding standard. The idea is to exploit the statistical dependencies from both temporal and inter-view reference pictures for(More)
Video transmission in wireless environments is a challenging task calling for high-compression efficiency as well as a network friendly design. Both have been major goals of the H.264/AVC standardization effort addressing “conversational” (i.e., video telephony) and “nonconversational” (i.e., storage, broadcast, or streaming) applications. The video(More)
Significant improvements in video compression capability have been demonstrated with the introduction of the H.264/MPEG-4 advanced video coding (AVC) standard. Since developing this standard, the Joint Video Team of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) has also standardized an extension of that(More)