Thomas W. Rosahl

Learn More
Mice carrying a mutation in the synaptotagmin I gene were generated by homologous recombination. Mutant mice are phenotypically normal as heterozygotes, but die within 48 hr after birth as homozygotes. Studies of hippocampal neurons cultured from homozygous mutant mice reveal that synaptic transmission is severely impaired. The synchronous, fast component(More)
Inhibitory neurotransmission in the brain is largely mediated by GABA(A) receptors. Potentiation of GABA receptor activation through an allosteric benzodiazepine (BZ) site produces the sedative, anxiolytic, muscle relaxant, anticonvulsant and cognition-impairing effects of clinically used BZs such as diazepam. We created genetically modified mice (alpha1(More)
Synaptic vesicles are coated by synapsins, phosphoproteins that account for 9% of the vesicle protein. To analyse the functions of these proteins, we have studied knockout mice lacking either synapsin I, synapsin II, or both. Mice lacking synapsins are viable and fertile with no gross anatomical abnormalities, but experience seizures with a frequency(More)
PSD-95 is a component of postsynaptic densities in central synapses. It contains three PDZ domains that localize N-methyl-D-aspartate receptor subunit 2 (NMDA2 receptor) and K+ channels to synapses. In mouse forebrain, PSD-95 bound to the cytoplasmic COOH-termini of neuroligins, which are neuronal cell adhesion molecules that interact with beta-neurexins(More)
Among hypnotic agents that enhance GABAA receptor function, etomidate is unusual because it is selective for beta2/beta3 compared with beta1 subunit-containing GABAA receptors. Mice incorporating an etomidate-insensitive beta2 subunit (beta(2N265S)) revealed that beta2 subunit-containing receptors mediate the enhancement of slow-wave activity (SWA) by(More)
The alpha5 subunit of the GABA(A) receptor is localized mainly to the hippocampus of the mammalian brain. The significance of this rather distinct localization and the function of alpha5-containing GABA(A) receptors has been explored by targeted disruption of the alpha5 gene in mice. The alpha5 -/- mice showed a significantly improved performance in a water(More)
The principal inhibitory neurotransmitter in the mammalian brain, gamma-aminobutyric acid (GABA), is thought to regulate memory processes by activating transient inhibitory postsynaptic currents. Here we describe a nonsynaptic, tonic form of inhibition in mouse CA1 pyramidal neurons that is generated by a distinct subpopulation of GABA type A receptors(More)
*Institute of Medical Science, Departments of †Anesthesia, §Physiology, and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8; ¶Merck Sharp & Dohme Research Laboratories, Neuroscience Research Center, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; ‡Department of Pharmacology and Neuroscience, Ninewells Medical School,(More)
We have studied synaptic function in a transgenic mouse strain relevant to Alzheimer's disease (AD), overexpressing the 695 amino acid isoform of human amyloid precursor protein with K670N and M671L mutations (APP(695)SWE mice), which is associated with early-onset familial AD. Aged-transgenic mice had substantially elevated levels of Abeta (up to 22(More)
BACKGROUND Many studies suggest that long term potentiation (LTP) has a role in learning and memory. In contrast, little is known about the function of short-lived plasticity (SLP). Modeling results suggested that SLP could be responsible for temporary memory storage, as in working memory, or that it may be involved in processing information regarding the(More)