Learn More
Concerns have been raised that anthropogenic climate change may lead to a slowdown or even collapse of the Atlantic thermohaline circulation (THC). Because of the possibly severe consequences that such an event could have on the northern North Atlantic and northwestern Europe, Integrated Assessment M o d-els (IAMs) are needed to explore the associated(More)
FastOpt's new automatic differentiation tool TAF is applied to the two-dimensional Navier-Stokes solver NSC2KE. For a configuration that simulates the Euler flow around a NACA airfoil, TAF has generated the tangent linear and adjoint models as well as the second derivative (Hessian) code. Owing to TAF's capability of generating efficient adjoints of(More)
In Neitzel et al. (Strategies for time-dependent PDE control using an integrated modeling and simulation environment. Part one: problems without inequality constraints. Technical Report 408, Matheon, Berlin, 2007) we have shown how time-dependent optimal control for partial differential equations can be realized in a modern high-level modeling and(More)
Fréchet differentiability and a formula for the derivative with respect to domain variation of a general class of cost functionals under the constraint of the two-dimensional stationary incompressible Navier-Stokes equations are shown. An embedding domain technique provides an equivalent formulation of the problem on a fixed domain and leads to a simple and(More)
We present a smooth, i.e. differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given(More)
We show how the software Femlab can be used to solve PDE-constrained optimal control problems. We give a general formulation for such kind of problems and derive the adjoint equation and optimality system. Then these preliminaries are specified for the stationary Navier–Stokes equations with distributed and boundary control. The main steps to define and(More)