Thomas Schultz

Learn More
The excited-state dynamics of adenine and thymine dimers and the adenine-thymine base pair were investigated by femtosecond pump-probe ionization spectroscopy with excitation wavelengths of 250-272 nm. The base pairs showed a characteristic ultrafast decay of the initially excited pi pi* state to an n pi* state (lifetime tau(pi pi*) approximately 100 fs)(More)
The daily movements of two co-occurring tiger beetle species were monitored in conjunction with changes in microclimate along streams in Northeast Arizona. Cicindela oregona and C. tranquebarica temporarily segregated across areas of beach exhibiting different microclimates. C. oregona progressively moved from the dry upper beach to the wet stream edge as(More)
We compiled data on the occurrence and frequency of distinct female variants among Holarctic Odonata and interpreted the data in light of harassment-based hypotheses. The major source of male confusion for male mimicry hypotheses is predicted to be signal similarity between andromorphs and male distractors; for the learned mate recognition hypothesis (LMR),(More)
We present experimental and theoretical evidence for an excited-state deactivation mechanism specific to hydrogen-bonded aromatic dimers, which may account, in part, for the photostability of the Watson-Crick base pairs in DNA. Femtosecond time-resolved mass spectroscopy of 2-aminopyridine clusters reveals an excited-state lifetime of 65 +/- 10 picoseconds(More)
The excited-state dynamics of trans-azobenzene were investigated by femtosecond time-resolved photoelectron spectroscopy and ab initio molecular dynamics. Two near-degenerate pipi* excited states, S2 and S3,4, were identified in a region hitherto associated with only one excited state. These results help to explain contradictory reports about the(More)
We present femtosecond time-resolved photoelectron spectra of adenine in a molecular beam, recorded at pump wavelengths of 250, 267, and 277 nm. This leads to initial excitation of the bright S2(pipi*). Close to the band origin (277 nm), the lifetime is several picoseconds. Higher vibronic levels (267 and 250 nm excitation) show much shorter lifetimes of t(More)
The excited state dynamics of the isolated and protonated peptide H(2)N-Leu-Trp-COOH are analyzed by fs pump-probe spectroscopy. The peptides are brought into the gas phase by electrospray ionization, and fs pump-probe excitation is detected by fragment ion formation. The pump laser addressed the excited pipi* state of the indole chromophore of the amino(More)
Time-resolved photoelectron spectroscopy was used to study the energetics and dynamics of solvated electrons in aqueous solution. Solvated electrons are generated by ultrafast photodetachment in a 100 mM aqueous NaI solution. Initially, an ensemble of strongly bound ("cold") solvated electrons and an ensemble of weakly bound ("hot") electrons in an(More)
We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid(More)