Thomas Schneider

Learn More
We present a new garbled circuit construction for two-party secure function evaluation (SFE). In our one-round protocol, XOR gates are evaluated “for free”, which results in the corresponding improvement over the best garbled circuit implementations (e.g. Fairplay [19]). We build permutation networks [26] and Universal Circuits (UC) [25] almost exclusively(More)
Secure two-party computation allows two untrusting parties to jointly compute an arbitrary function on their respective private inputs while revealing no information beyond the outcome. Existing cryptographic compilers can automatically generate secure computation protocols from high-level specifications, but are often limited in their use and efficiency of(More)
Secure multi-party computation has been considered by the cryptographic community for a number of years. Until recently it has been a purely theoretical area, with few implementations with which to test various ideas. This has led to a number of optimisations being proposed which are quite restricted in their application. In this paper we describe an(More)
Automatic recognition of human faces is becoming increasingly popular in civilian and law enforcement applications that require reliable recognition of humans. However, the rapid improvement and widespread deployment of this technology raises strong concerns regarding the violation of individuals’ privacy. A typical application scenario for(More)
We consider generic Garbled Circuit (GC)-based techniques for Secure Function Evaluation (SFE) in the semi-honest model. We describe efficient GC constructions for addition, subtraction, multiplication, and comparison functions. Our circuits for subtraction and comparison are approximately two times smaller (in terms of garbled tables) than previous(More)
Secure computation enables mutually distrusting parties to jointly evaluate a function on their private inputs without revealing anything but the function’s output. Generic secure computation protocols in the semi-honest model have been studied extensively and several best practices have evolved. In this work, we design and implement a mixed-protocol(More)
Cloud Computing is an emerging technology promising new business opportunities and easy deployment of web services. Much has been written about the risks and benefits of cloud computing in the last years. The literature on clouds often points out security and privacy challenges as the main obstacles, and proposes solutions and guidelines to avoid them.(More)
Protocols for secure computation enable parties to compute a joint function on their private inputs without revealing anything but the result. A foundation for secure computation is oblivious transfer (OT), which traditionally requires expensive public key cryptography. A more efficient way to perform many OTs is to extend a small number of base OTs using(More)
We introduce Tiny Garble, a novel automated methodology based on powerful logic synthesis techniques for generating and optimizing compressed Boolean circuits used in secure computation, such as Yao's Garbled Circuit (GC) protocol. Tiny Garble achieves an unprecedented level of compactness and scalability by using a sequential circuit description for GC. We(More)
Privacy protection is a crucial problem in many biomedical signal processing applications. For this reason, particular attention has been given to the use of secure multiparty computation techniques for processing biomedical signals, whereby nontrusted parties are able to manipulate the signals although they are encrypted. This paper focuses on the(More)