Thomas S. Hofer

Learn More
A simulation of phosphate in aqueous solution was carried out employing the new QMCF MD approach which offers the possibility to investigate composite systems with the accuracy of a QMMM method but without the time consuming creation of solute-solvent potential functions. The data of the simulations give a clear picture of the hydration shells of the(More)
A systematic investigation of three different electron-electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li(+) and Be(2+) using a large number of different basis sets. The convergence behavior of the(More)
Structural and dynamical properties of the Tl(I) ion in dilute aqueous solution have been investigated by ab initio quantum mechanics in combination with molecular mechanics. The first shell plus a part of the second shell were treated by quantum mechanics at Hartree-Fock level, the rest of the system was described by an ab initio constructed potential. The(More)
Classical molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) MD simulations have been performed to investigate the structural and dynamical properties of the Tl(III) ion in water. A six-coordinate hydration structure with a maximum probability of the Tl-O distance at 2.21 A was observed, which is in good agreement with(More)
The hydration of the Bi(III) ion was determined via an ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulation. Ten picosecond sampling was carried out to determine structural and dynamical properties of the Bi(III) ion in aqueous solution. In the first hydration shell, the ion is 9-fold coordinated with a maximum probability of(More)
Based on a systematic investigation of trajectories of ab initio quantum mechanical/molecular mechanical simulations of numerous cations in water a standardized procedure for the evaluation of mean ligand residence times is proposed. For the characterization of reactivity and structure-breaking/structure-forming properties of the ions a measure is derived(More)
The four-times positively charged zirconium ion in aqueous solution was simulated, using an ab initio quantum mechanical charge field molecular dynamics approach. As no hydrolysis reaction occurred during the simulation time of 10 ps, the target of this study was the evaluation of the structure and dynamics of the monomeric hydrated zirconium(iv) ion. The(More)
A molecular dynamics simulation study of mononuclear iron 15S-lipoxygenase (15S-LOX) from rabbit reticulocytes was performed to investigate its structure and dynamics; newly developed AMBER force field parameters were employed for the first coordination sphere of the catalytic iron (II). The results obtained from this study demonstrate that the structural(More)
The quantum mechanical charge field molecular dynamics (QMCF-MD) framework was applied in a simulation of the uranyl(v) ion in aqueous solution. The structure was evaluated on the basis of overall and sectorial radial distribution functions, angular distribution functions, tilt- and Theta-angle distribution functions and coordination number distributions.(More)