Thomas Renger

Learn More
A simple electrostatic method for the calculation of optical transition energies of pigments in protein environments is presented and applied to the Fenna-Matthews-Olson (FMO) complex of Prosthecochloris aestuarii and Chlorobium tepidum. The method, for the first time, allows us to reach agreement between experimental optical spectra and calculations based(More)
A structure-based modeling and analysis of the primary photophysical reactions in photosystem II (PS-II) core complexes is presented. The modeling is based on a description of stationary and time-resolved optical spectra of the CP43, CP47, and D1-D2-cytb559 subunits and whole core complexes. It shows that the decay of excited states in PS-II core complexes(More)
Based on the structural analysis of photosystem II of Thermosynechococcus elongatus, a detailed calculation of optical properties of reaction-center (D1-D2) complexes is presented applying a theory developed previously. The calculations of absorption, linear dichroism, circular dichroism, fluorescence spectra, all at 6 K, and the temperature-dependence of(More)
In photosynthesis, light is captured by antenna proteins. These proteins transfer the excitation energy with almost 100% quantum efficiency to the reaction centers, where charge separation takes place. The time scale and pathways of this transfer are controlled by the protein scaffold, which holds the pigments at optimal geometry and tunes their excitation(More)
Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., P(+)Pheo(-),P(+)Q(A)(-),(3)P) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of(More)
D1-Thr179, which overlies the reaction center chlorophyll Chl D1 of Photosystem II was replaced with His and Glu through site-directed mutation in Synechocystis sp. PCC 6803. Spectroscopic characterization of the mutants indicates that, compared to wild type, the main bleaching in the triplet-minus-singlet absorbance difference spectrum and the(More)
The Fenna–Matthews–Olson (FMO) protein of green sulfur bacteria represents an important model protein for the study of elementary pigment–protein couplings. We have previously used a simple approach [Adolphs and Renger (2006) Biophys J 91:2778–2797] to study the shift in local transition energies (site energies) of the FMO protein of Prosthecochloris(More)
The influence of charge transfer states on the optical line shape of chromophore complexes is investigated in a minimal model that includes a coupling between an excited state and an optically dark charge transfer state. In the calculations of the absorption spectrum, an intensity borrowing by the charge transfer state, strong vibrational sidebands, and a(More)
Optical line shape theory is combined with a quantum-chemical/electrostatic calculation of the site energies of the 96 chlorophyll a pigments and their excitonic couplings to simulate optical spectra of photosystem I core complexes from Thermosynechococcus elongatus. The absorbance, linear dichroism and circular dichroism spectra, calculated on the basis of(More)
This mini-review summarizes our current theoretical knowledge about excitation energy transfer in pigment–protein complexes. The challenge for theory lies in the complexity of these systems and in the fact that the pigment–pigment and the pigment–protein interactions are of equal magnitude. The first part of this review contains an introduction to the(More)