Thomas Ragnar Wood

Learn More
Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by(More)
BACKGROUND Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This(More)
Therapeutic hypothermia (HT) is standard care for moderate and severe neonatal hypoxic-ischaemic encephalopathy (HIE), the leading cause of permanent brain injury in term newborns. However, the optimal temperature for HT is still unknown, and few preclinical studies have compared multiple HT treatment temperatures. Additionally, HT may not benefit infants(More)
BACKGROUND Therapeutic hypothermia (TH) is standard treatment following perinatal asphyxia in newborn infants. Experimentally, TH is neuroprotective after moderate hypoxia-ischemia (HI) in seven-day-old (P7) rats. However, TH is not neuroprotective after severe HI. After a moderate HI insult in newborn brain injury models, the anesthetic gas xenon (Xe)(More)
Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome(More)
Neonatal hypoxic-ischemic encephalopathy (HIE) is associated with alterations in cerebral blood flow (CBF) as a result of perinatal asphyxia. The extent to whichCBFchanges contribute to injury, and whether treatments that ameliorate these changes might be neuroprotective, is still unknown. Higher throughput techniques to monitorCBFchanges in rodent models(More)
BACKGROUND Hyperthermia after hypoxia-ischaemia (HI) in newborn infants is associated with worse neurological outcomes. Loss of thermoregulation may also be associated with greater injury. METHODS In the postnatal-day 7 (P7) rat, the effect of 5h of graded hyperthermia (38°C or 39°C) immediately after unilateral HI was compared to normothermia (NT, 37°C),(More)
Perinatal infection increases the vulnerability of the neonatal brain to hypoxic-ischaemic (HI) injury. Hypothermia treatment (HT) does not provide neuroprotection after pre-insult inflammatory sensitisation by lipopolysaccharide (LPS), a gram-negative bacterial wall constituent. However, early-onset sepsis in term babies is caused by gram-positive species(More)