Learn More
Global amphibian declines have often been attributed to disease, but ignorance of the relative importance and mode of action of potential drivers of infection has made it difficult to develop effective remediation. In a field study, here we show that the widely used herbicide, atrazine, was the best predictor (out of more than 240 plausible candidates) of(More)
The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the(More)
Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to(More)
Anthropogenic factors can have simultaneous positive and negative effects on parasite transmission, and thus it is important to quantify their net effects on disease risk. Net effects will be a product of changes in the survival and traits (e.g., susceptibility, infectivity) of both hosts and parasites. In separate laboratory experiments, we exposed(More)
1. Recent evidence of the important role of emerging diseases in amphibian population declines makes it increasingly important to understand how environmental changes affect amphibian immune systems. 2. Temperature-dependent immunity may be particularly important to amphibian disease dynamics, especially in temperate regions. Changes in temperature are(More)
The notion that climate change will generally increase human and wildlife diseases has garnered considerable public attention, but remains controversial and seems inconsistent with the expectation that climate change will also cause parasite extinctions. In this review, we highlight the frontiers in climate change-infectious disease research by reviewing(More)
Predation and competition can induce important density- and trait-mediated effects on species, with implications for community stability. However, interactions of these factors with parasitism remain understudied. Here we investigate interactions among competition, predation and parasitism by crossing tadpole density (Bufo americanus), presence of a caged(More)
Understanding linkages between environmental changes and disease emergence in human and wildlife populations represents one of the greatest challenges to ecologists and parasitologists. While there is considerable interest in drivers of amphibian microparasite infections and the resulting consequences, comparatively little research has addressed such(More)
Given the worldwide decline of amphibian populations due to emerging infectious diseases, it is imperative that we identify and address the causative agents. Many of the pathogens recently implicated in amphibian mortality and morbidity have been fungal or members of a poorly understood group of fungus-like protists, the mesomycetozoans. One mesomycetozoan,(More)