Learn More
Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to(More)
Global amphibian declines have often been attributed to disease, but ignorance of the relative importance and mode of action of potential drivers of infection has made it difficult to develop effective remediation. In a field study, here we show that the widely used herbicide, atrazine, was the best predictor (out of more than 240 plausible candidates) of(More)
The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the(More)
Parasites have been implicated in mass mortality events and population declines of amphibians around the world. One pathogen associated with mortality events in North America is an Ichthyophonus sp.-like organism that affects red-spotted newts (Notophthalmus viridescens) and several frog species, yet little is known about the distribution of this pathogen(More)
There is growing interest in the ecological consequences of fear, as evidenced by the numerous studies on the nonconsumptive, trait-mediated effects of predators. Parasitism, however, has yet to be fully integrated into research on the ecology of fear, despite it having direct negative and often lethal effects on hosts and being the most common life history(More)
Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent(More)
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) is considered responsible for the population declines and extinctions of hundreds of amphibian species worldwide. The panzootic was likely triggered by human-assisted spread, but once the pathogen becomes established in a given region, its distribution is probably determined by local drivers.(More)
BACKGROUND Contaminants have been implicated in declines of amphibians, a taxon with vital systems similar to those of humans. However, many chemicals have not been thoroughly tested on amphibians or do not directly kill them. OBJECTIVE Our goal in this study was to quantify amphibian responses to chlorothalonil, the most commonly used synthetic fungicide(More)
Several studies have demonstrated that competition between disparate taxa can be important in determining community structure, yet surprisingly, to our knowledge, no quantitative studies have been conducted on competition between carnivorous plants and animals. To examine potential competition between these taxa, we studied dietary and microhabitat overlap(More)