Learn More
Large-scale traffic networks can be modeled as graphs in which a set of nodes are connected through a set of links that cannot be loaded above their traffic capacities. Traffic flows may vary over time. Then the nodes may be requested to modify the traffic flows to be sent to their neighboring nodes. In this case, a dynamic routing problem arises. The(More)
—This paper presents a unified methodology for detecting , isolating and accommodating faults in a class of nonlinear dynamic systems. A fault diagnosis component is used for fault detection and isolation. On the basis of the fault information obtained by the fault-diagnosis procedure, a fault-tolerant control component is designed to compensate for the(More)
—In this paper, the robust state feedback stabilization of uncertain discrete-time constrained nonlinear systems in which the loop is closed through a packet-based communication network is addressed. In order to cope with model uncertainty, time-varying transmission delays, and packet dropouts (typically affecting the performances of networked control(More)
—This paper addresses the problem of cooperative control of a team of distributed agents with decoupled nonlinear discrete-time dynamics, which operate in a common environment and exchange-delayed information between them. Each agent is assumed to evolve in discrete-time, based on locally computed control laws, which are computed by exchanging delayed state(More)
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods(More)