Thomas Ostler

Learn More
Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of(More)
The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or(More)
Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic(More)
There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic(More)
The dynamics of magnetic vortex cores is of great interest because the gyrotropic mode has applications in spin torque driven magnetic microwave oscillators, and also provides a means to flip the direction of the core for use in magnetic storage devices. Here, we propose a new means of stimulating magnetization reversal of the vortex core by applying a(More)
Using the Landau-Lifshitz-Bloch (LLB) equation for ferromagnetic materials, we derive analytic expressions for temperature-dependent absorption spectra as probed by ferromagnetic resonance. By analyzing the resulting expressions, we can predict the variation of the resonance frequency and damping with temperature and coupling to the thermal bath. We base(More)
— Optical interconnect has emerged as the front-runner to replace electrical interconnect especially for off-chip communication. However, a major drawback with optical interconnects is the need for photodetectors and amplifiers at the receiver, implemented usually by direct bandgap semiconductors and analog CMOS circuits, leading to large energy consumption(More)
Equi-atomic FeRh is highly unusual in that it undergoes a first order meta-magnetic phase transition from an antiferromagnet to a ferromagnet above room temperature (Tr ≈ 370 K). This behavior opens new possibilities for creating multifunctional magnetic and spintronic devices which can utilise both thermal and applied field energy to change state and(More)
The all-optimal magnetic switching is a promising phenomenon to push forward the speed of the magnetic recording. This switching with linearly polarized lasers has been shown to have a pure thermodynamical origin and received the name of thermally induced magnetization switching (TIMS). TIMS has enormous potential for reduction of the energy consumption. It(More)
  • 1