Learn More
After clinical resolution of signs and symptoms of mild traumatic brain injury (MTBI) it is still not clear if there are residual abnormalities of structural or functional brain networks. We have previously documented disrupted interhemispheric functional connectivity in 'asymptomatic' concussed individuals during the sub-acute phase of injury. Testing of(More)
Stem cell transplantation is a promising therapeutic approach for several neurological disorders. However, it has yet to fulfill its high expectations, partially due to the lack of a reliable noninvasive method for monitoring the biodistribution of the grafted stem cells in vivo. We have used high-resolution magnetic resonance imaging (MRI) at 17.6 T,(More)
BACKGROUND AND PURPOSE Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disorder of the CNS and an animal model of multiple sclerosis. We used high-field MR microscopy at 17.6 T to image spinal cord inflammatory lesions in the acute stage of chronic relapsing rat EAE. We sought to compare lesions detected on MR imaging with(More)
Although they are less severe than a full blown concussive episodes, subconcussive impacts happen much more frequently and current research has suggested this form of head trauma may have an accumulative effect and lead to neurological impairment later in life. To investigate the acute effects that subconcussive head trauma may have on the default mode(More)
It is important to accurately characterize the heating of tissues due to the radiofrequency energy applied during MRI. This has led to an increase in the use of numerical methods to predict specific energy absorption rate distributions for safety assurance in MRI. To ensure these methods are accurate for actual MRI coils, however, it is necessary to compare(More)
The objective was to demonstrate the feasibility and to evaluate the performance of high-resolution in vivo magnetic resonance (MR) imaging of the rat spinal cord in a 17.6-T vertical wide-bore magnet. A probehead consisting of a surface coil that offers enlarged sample volume suitable for rats up to a weight of 220 g was designed. ECG triggered and(More)
The medial prefrontal cortex (mPFC) plays a critical role in multiple cognitive and limbic functions. Given its vital importance, investigating the function of individual mPFC circuits in animal models has provided critical insight into the neural basis underlying different behaviors and psychiatric conditions. However, our knowledge regarding the mPFC(More)
Our purpose was to study morphological, functional, and metabolic changes induced by chronic ischemia in myocardium supplied by the stenotic vessel and in the remote area by MR techniques. A new technique of image fusion is proposed for analysis of coronary artery stenosis involving coronary MR angiography and spectroscopic imaging. Cine-MRI was performed 2(More)
The architecture of the muscle fascicles, here meaning their lengths and their arrangement relative to one another, has important implications for the force a muscle can produce. Therefore, quantifying this architectural arrangement and understanding the implications of the architecture are important for understanding muscle function in vivo. There were two(More)
We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the(More)