Thomas Navin Lal

Learn More
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled(More)
Designing a brain computer interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying electroencephalogram (EEG) signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm(More)
The Common Spatial Pattern (CSP) algorithm is a highly successful method for efficiently calculating spatial filters for brain signal classification. Spatial filtering can improve classification performance considerably, but demands that a large number of electrodes be mounted, which is inconvenient in day-to-day BCI usage. The CSP algorithm is also known(More)
The aim of this paper is to show that machine learning techniques can be used to derive a classifying function for human brain signal data measured by magnetoencephalography (MEG), for the use in a brain computer interface (BCI). This is especially helpful for evaluating quickly whether a BCI approach based on electroencephalography, on which training may(More)
We present the results from three motor-imagery-based Brain-Computer Interface experiments. Brain signals were recorded from 8 untrained subjects using EEG, 4 using ECoG and 10 using MEG. In all cases, we aim to develop a system that could be used for fast, reliable preliminary screening in the clinical application of a BCI, so we aim to obtain the best(More)
We summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of electroencephalogram (EEG) or electrocorticogram (ECoG) signals for each subject. We apply the same experimental and analytical methods to 11 nonparalysed subjects (eight EEG, three ECoG), and to five(More)
During the last ten years there has been growing interest in the development of Brain Computer Interfaces (BCIs). The field has mainly been driven by the needs of completely paralyzed patients to communicate. With a few exceptions, most human BCIs are based on extracranial electroencephalography (EEG). However, reported bit rates are still low. One reason(More)
Motivated by the particular problems involved in communicating with “locked-in” paralysed patients, we aim to develop a braincomputer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification(More)
Most EEG-based brain-computer interface (BCI) paradigms come along with specific electrode positions, for example, for a visualbased BCI, electrode positions close to the primary visual cortex are used. For new BCI paradigms it is usually not known where task relevant activity can bemeasured from the scalp. For individual subjects, Lal et al. in 2004 showed(More)