Learn More
Emerging evidence indicates that impaired cellular energy metabolism is the defining characteristic of nearly all cancers regardless of cellular or tissue origin. In contrast to normal cells, which derive most of their usable energy from oxidative phosphorylation, most cancer cells become heavily dependent on substrate level phosphorylation to meet energy(More)
Schaffer collaterals of rat and mouse hippocampal slices were stimulated with bursts of pulses (300 Hz for 50 ms, 2-s intervals) for 30-s which caused a stable increase in the size of the population spike known as long-term potentiation. The release of adenosine triphosphate (ATP) was measured with a luciferase-luciferine system and the light emitted was(More)
Biochemical studies have indicated that the disialoganglioside, GD3, is a major glycolipid component of the immature vertebrate CNS, but a minor element within the mature CNS. We have investigated its cellular localization in rat CNS by immunofluorescence using a mouse monoclonal antibody that recognizes GD3. In tissue sections of postnatal CNS, the(More)
Intracranial transplantation of neural stem cells (NSCs) delayed disease onset, preserved motor function, reduced pathology and prolonged survival in a mouse model of Sandhoff disease, a lethal gangliosidosis. Although donor-derived neurons were electrophysiologically active within chimeric regions, the small degree of neuronal replacement alone could not(More)
GM1 gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid beta-galactosidase (beta-gal), the enzyme that catabolyzes GM1 within lysosomes. Accumulation of GM1 and its asialo form (GA1) occurs primarily in the brain, leading to progressive neurodegeneration and brain dysfunction. Substrate reduction(More)
Brain tumours lack metabolic versatility and are dependent largely on glucose for energy. This contrasts with normal brain tissue that can derive energy from both glucose and ketone bodies. We examined for the first time the potential efficacy of dietary therapies that reduce plasma glucose and elevate ketone bodies in the CT-2A syngeneic malignant mouse(More)
Diet and lifestyle produce major effects on tumour incidence, prevalence, and natural history. Moderate dietary restriction has long been recognised as a natural therapy that improves health, promotes longevity, and reduces both the incidence and growth of many tumour types. Dietary restriction differs from fasting or starvation by reducing total food and(More)
PURPOSE Caloric restriction (CR) involves underfeeding and has long been recognized as a dietary therapy that improves health and increases longevity. In contrast to severe fasting or starvation, CR reduces total food intake without causing nutritional deficiencies. Although fasting has been recognized as an effective antiseizure therapy since the time of(More)
Most malignant brain tumours contain various numbers of cells with characteristics of activated or dysmorphic macrophages/microglia. These cells are generally considered part of the tumour stroma and are often described as TAM (tumour-associated macrophages). These types of cells are thought to either enhance or inhibit brain tumour progression. Recent(More)
Gangliosides are sialic acid-containing glycosphingolipids that have long been associated with tumor malignancy and metastasis. Mounting evidence suggests that gangliosides also modulate tumor angiogenesis. Tumor cells shed gangliosides into the microenvironment, which produces both autocrine and paracrine effects on tumor cells and tumor-associated host(More)