Thomas Moscibroda

Learn More
In a chip-multiprocessor (CMP) system, the DRAM system isshared among cores. In a shared DRAM system, requests from athread can not only delay requests from other threads by causingbank/bus/row-buffer conflicts but they can also destroy other threads’DRAM-bank-level parallelism. Requests whose latencies would otherwisehave been overlapped could(More)
Networking over UHF white spaces is fundamentally different from conventional Wi-Fi along three axes: spatial variation, temporal variation, and fragmentation of the UHF spectrum. Each of these differences gives rise to new challenges for implementing a wireless network in this band. We present the design and implementation of Net7, the first Wi-Fi like(More)
We define and study the scheduling complexity in wireless networks, which expresses the theoretically achievable efficiency of MAC layer protocols. Given a set of communication requests in arbitrary networks, the scheduling complexity describes the amount of time required to successfully schedule all requests. The most basic and important network structure(More)
Energy has become a first-class design constraint in computer systems. Memory is a significant contributor to total system power. This paper introduces Flikker, an application-level technique to reduce refresh power in DRAM memories. Flikker enables developers to specify critical and non-critical data in programs and the runtime system allocates this data(More)
We study a fundamental yet under-explored facet in wireless communication -- the width of the spectrum over which transmitters spread their signals, or the channel width. Through detailed measurements in controlled and live environments, and using only commodity 802.11 hardware, we first quantify the impact of channel width on throughput, range, and power(More)
DRAM is facing severe scalability challenges in sub-45nm tech- nology nodes due to precise charge placement and sensing hur- dles in deep-submicron geometries. Resistive memories, such as phase-change memory (PCM), already scale well beyond DRAM and are a promising DRAM replacement. Unfortunately, PCM is write-limited, and current approaches to managing(More)
Without well-provisioned dedicated servers, modern fast-paced action games limit the number of players who can interact simultaneously to 16-32. This is because interacting players must frequently exchange state updates, and high player counts would exceed the bandwidth available to participating machines. In this paper, we describe Donnybrook, a system(More)
A simple yet remarkably powerful tool of selfish and malicious participants in a distributed system is “equivocation”: making conflicting statements to others. We present TrInc, a small, trusted component that combats equivocation in large, distributed systems. Consisting fundamentally of only a non-decreasing counter and a key, TrInc provides a new(More)