Thomas Mensink

Learn More
The Fisher kernel (FK) is a generic framework which combines the benefits of generative and discriminative approaches. In the context of image classification the FK was shown to extend the popular bag-of-visual-words (BOV) by going beyond count statistics. However, in practice, this enriched representation has not yet shown its superiority over the BOV. In(More)
A standard approach to describe an image for classification and retrieval purposes is to extract a set of local patch descriptors, encode them into a high dimensional vector and pool them into an image-level signature. The most common patch encoding strategy consists in quantizing the local descriptors into a finite set of prototypical elements. This leads(More)
Image auto-annotation is an important open problem in computer vision. For this task we propose TagProp, a discriminatively trained nearest neighbor model. Tags of test images are predicted using a weighted nearest-neighbor model to exploit labeled training images. Neighbor weights are based on neighbor rank or distance. TagProp allows the integration of(More)
We study large-scale image classification methods that can incorporate new classes and training images continuously over time at negligible cost. To this end, we consider two distance-based classifiers, the k-nearest neighbor (k-NN) and nearest class mean (NCM) classifiers, and introduce a new metric learning approach for the latter. We also introduce an(More)
Image annotation is an important computer vision problem where the goal is to determine the relevance of annotation terms for images. Image annotation has two main applications: (i) proposing a list of relevant terms to users that want to assign indexing terms to images, and (ii) supporting keyword based search for images without indexing terms, using the(More)
We consider two scenarios of naming people in databases of news photos with captions: (i) finding faces of a single person, and (ii) assigning names to all faces. We combine an initial text-based step, that restricts the name assigned to a face to the set of names appearing in the caption, with a second step that analyzes visual features of faces. By(More)
We are interested in large-scale image classification and especially in the setting where images corresponding to new or existing classes are continuously added to the training set. Our goal is to devise classifiers which can incorporate such images and classes on-the-fly at (near) zero cost. We cast this problem into one of learning a metric which is(More)
We consider automated detection of events in video without the use of any visual training examples. A common approach is to represent videos as classification scores obtained from a vocabulary of pre-trained concept classifiers. Where others construct the vocabulary by training individual concept classifiers, we propose to train classifiers for combination(More)
In this paper, we present methods for face recognition using a collection of images with captions. We consider two tasks: retrieving all faces of a particular person in a data set, and establishing the correct association between the names in the captions and the faces in the images. This is challenging because of the very large appearance variation in the(More)
In this paper we aim for zero-shot classification, that is visual recognition of an unseen class by using knowledge transfer from known classes. Our main contribution is COSTA, which exploits co-occurrences of visual concepts in images for knowledge transfer. These inter-dependencies arise naturally between concepts, and are easy to obtain from existing(More)