Learn More
Gap junctions are formed by a family of homologous proteins termed connexins. Their channels are dodecamers, and homomeric forms differ in their properties with respect to control by voltage and other gating stimuli. We report here the properties of coupling from expression of connexin complementary RNAs (cRNAs; sense to mRNA, antisense to cDNA) in Xenopus(More)
The functional diversity of gap junction intercellular channels arising from the large number of connexin isoforms is significantly increased by heterotypic interactions between members of this family. This is particularly evident in the rectifying behavior of Cx26/Cx32 heterotypic channels (. Proc. Natl. Acad. Sci. USA. 88:8410-8414). The channel(More)
The peptide GsMTx4, isolated from the venom of the tarantula Grammostola spatulata, is a selective inhibitor of stretch-activated cation channels (SACs). The mechanism of inhibition remains unknown; but both GsMTx4 and its enantiomer, enGsMTx4, modify the gating of SACs, thus violating a trademark of the traditional lock-and-key model of ligand-protein(More)
Gap junction channels are structurally distinct from other ion channels in that they comprise two hemichannels which interact head-to-head to form an aqueous channel between cells. Intercellular voltage differences together with increased intracellular concentrations of H+ and Ca2+ cause closure of these normally patent channels. The relative sensitivity to(More)
We have identified a 35 amino acid peptide toxin of the inhibitor cysteine knot family that blocks cationic stretch-activated ion channels. The toxin, denoted GsMTx-4, was isolated from the venom of the spider Grammostola spatulata and has <50% homology to other neuroactive peptides. It was isolated by fractionating whole venom using reverse phase HPLC, and(More)
The neuronal mechano-gated K2P channels TREK-1 and TRAAK show pronounced desensitization within 100 ms of membrane stretch. Desensitization persists in the presence of cytoskeleton disrupting agents, upon patch excision, and when channels are expressed in membrane blebs. Mechanosensitive currents evoked with a variety of complex stimulus protocols were(More)
The coding sequence (333 amino acids) of a new connexin protein, designated mouse connexin37 (Cx37 or Cx37.6) due to the deduced theoretical molecular mass of 37.600 kD, has been determined from cDNA and genomic clones. As seen in other connexins, its gene has no introns within the coding region and the deduced amino acid sequence is predicted to have(More)
Interpreting channel behavior in patches requires an understanding of patch structure and dynamics, especially in studies of mechanosensitive channels. High resolution optical studies show that patch formation occurs via blebbing that disrupts normal membrane structure and redistributes in situ components including ion channels. There is a 1-2 microm region(More)
Mechanically sensitive ion channels (MSCs) are ubiquitous. They exist as two major types: those in specialized receptors that require fibrous proteins to transmit forces to the channel, and those in non-specialized tissues that respond to stress in the lipid bilayer. While few MSCs have been cloned, the existing structures show no sequence or structural(More)
The mdx mouse lacks dystrophin and is a model of human Duchenne muscular dystrophy. Single mdx muscle fibres were isolated and subjected to a series of stretched (eccentric) contractions while measuring intracellular calcium concentration ([Ca(2+)](i)) with fluo-3 and confocal microscopy. Following the stretched contractions there was a slow rise in resting(More)