Thomas Ludwig

Learn More
Cellular senescence has been theorized to oppose neoplastic transformation triggered by activation of oncogenic pathways in vitro, but the relevance of senescence in vivo has not been established. The PTEN and p53 tumour suppressors are among the most commonly inactivated or mutated genes in human cancer including prostate cancer. Although they are(More)
B cells producing high-affinity antibodies are destined to differentiate into memory B cells and plasma cells, but the mechanisms leading to those differentiation pathways are mostly unknown. Here we report that the transcription factor IRF4 is required for the generation of plasma cells. Transgenic mice with conditional deletion of Irf4 in germinal center(More)
Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly(More)
We have determined that hMOF, the human ortholog of the Drosophila MOF gene (males absent on the first), encoding a protein with histone acetyltransferase activity, interacts with the ATM (ataxia-telangiectasia-mutated) protein. Cellular exposure to ionizing radiation (IR) enhances hMOF-dependent acetylation of its target substrate, lysine 16 (K16) of(More)
Studies of Drosophila and mammals have revealed the importance of insulin signaling through phosphatidylinositol 3-kinase and the serine/threonine kinase Akt/protein kinase B for the regulation of cell, organ, and organismal growth. In mammals, three highly conserved proteins, Akt1, Akt2, and Akt3, comprise the Akt family, of which the first two are(More)
Cis-platin is an effective anti-neoplastic agent, but it is also highly nephrotoxic. Here, we clearly identify the human organic cation transporter 2 (hOCT2) as the critical transporter for cis-platin nephrotoxicity in isolated human proximal tubules and offer a potential mechanism for reducing nephrotoxicity in clinical practice. Interaction of cis-platin(More)
We have investigated the distribution of newly synthesized lysosomal enzymes in endocytic compartments of normal rat kidney (NRK) cells. The mannose-6-phosphate (Man6-P) containing lysosomal enzymes could be iodinated in situ after internalization of lactoperoxidase (LPO) by fluid phase endocytosis and isolated on CI-MPR affinity columns. For EM studies,(More)
Germline mutations of the breast cancer 1 (BRCA1) gene are a major cause of familial breast and ovarian cancer. The BRCA1 protein displays E3 ubiquitin ligase activity, and this enzymatic function is thought to be required for tumor suppression. To test this hypothesis, we generated mice that express an enzymatically defective Brca1. We found that this(More)
The cation-dependent and cation-independent mannose 6-phosphate receptors (CD- and CI-MPRs) bind the phosphomannosyl recognition marker of lysosomal hydrolases, but in mammals the latter also interacts with insulin-like growth factor II (IGF-II). While IGF signaling is mediated by the type 1 IGF receptor (IGF1R), the type 2 receptor (IGF2R/CI-MPR) serves(More)
The mammalian ortholog of the Drosophila MOF (males absent on the first) gene product is a histone H4 lysine 16-specific acetyltransferase. Recent studies have shown that depletion of human MOF (hMOF) in human cell lines leads to genomic instability, spontaneous chromosomal aberrations, cell cycle defects, altered nuclear morphology, reduced transcription(More)