Learn More
Characterizing the interaction of hydrogen chloride (HCl) with polar stratospheric cloud ice particles is essential for understanding the processes responsible for ozone depletion. We studied the interaction of gas-phase HCl with ice between 243 and 186 K by using (i) ellipsometry to monitor the ice surface and (ii) coated-wall flow tube experiments, both(More)
Characterization of the interaction of hydrogen chloride (HCl) with polar stratospheric cloud (PSC) ice particles is essential to understanding the processes responsible for ozone depletion. The interaction of HCl with ice was studied using a coated-wall flow tube with chemical ionization mass spectrometry (CIMS) between 5x10(-8) and 10(-4) Torr HCl and(More)
The structure of human Janus kinase 2 (JAK2) comprising the two C-terminal domains (JH1 and JH2) was predicted by application of homology modelling techniques. JH1 and JH2 represent the tyrosine kinase and tyrosine kinase-like domains, respectively, and are crucial for function and regulation of the protein. A comparison between the structures of the two(More)
The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water's calorimetric glass transition of(More)
Many acronyms are used in the literature for describing different kinds of amorphous ice, mainly because many different preparation routes and many different sample histories need to be distinguished. We here introduce these amorphous ices and discuss the question of how many of these forms are of relevance in the context of polyamorphism. We employ the(More)
Micrometre-sized water droplets were hyperquenched on a solid substrate held at selected temperatures between 150 and 77 K. These samples were characterized by differential scanning calorimetry (DSC) and X-ray diffraction. 140 K is the upper temperature limit to obtain mainly amorphous samples on deposition within 16-37 min. DSC scans of glassy water(More)
Layers of glassy methanolic (aqueous) solutions of KHCO3 and HCl were deposited sequentially at 78 K on a CsI window, and their reaction on heating in vacuo in steps from 78 to 230 K was followed by Fourier transform infrared (FTIR) spectroscopy. After removal of solvent and excess HCl, IR spectra revealed formation of two distinct states of amorphous(More)
The freezing of aqueous solutions and reciprocal distribution of ice and a freeze-concentrated solution (FCS) are poorly understood in spite of their importance in fields ranging from biotechnology and life sciences to geophysics and climate change. Using an optical cryo-microscope and differential scanning calorimetry, we demonstrate that upon cooling of(More)
Supercooled water does not behave like a simple liquid, but instead shows a number of anomalous properties. These include the diffusion coefficient [2] or the kinematic viscosity [3] which show anomalous pressure dependencies on compression up to 200MPa, whereas beyond 200 MPa the expected behaviour is observed. To explain these anomalies the second(More)