Learn More
Neural precursors (NPs) derived from ventral mesencephalon (VM) normally generate dopaminergic (DA) neurons in vivo but lose their potential to differentiate into DA neurons during mitogenic expansion in vitro, hampering their efficient use as a transplantable and experimental cell source. Because embryonic stem (ES) cell-derived NPs (ES NP) do not go(More)
The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest(More)
AP-2 family transcription factors are essential for development and morphogenesis of diverse tissues and organs, but their precise roles in specification of neural crest stem cell (NCSC)-derived cell types have not been determined. Among three members known to be expressed in the NCSC (i.e. AP-2alpha, AP-2beta, and AP-2gamma), we found that only AP-2beta is(More)
Both fetal ventral mesencephalic (VM) and embryonic stem (ES) cell-derived dopamine neurons have been used successfully to correct behavioral responses in animal models of Parkinson's disease. However, grafts derived from fetal VM cells or from ES cells contain multiple cell types, and the majority of these cells are not dopamine neurons. Isolation of ES(More)
The homeodomain transcription factor Phox2b is one of the key determinants involved in the development of noradrenergic (NA) neurons in both the central nervous system (CNS) and the peripheral nervous system (PNS). Using yeast two-hybrid screening, we isolated a Phox2b interacting protein, Trim11, which belongs to TRIM (Tripartite motif) or RBCC proteins(More)
The zinc finger transcription factor GATA-3 is a master regulator of type 2 T-helper cell development. Interestingly, in GATA-3-/- mice, noradrenaline (NA) deficiency is a proximal cause of embryonic lethality. However, neither the role of GATA-3 nor its target gene(s) in the nervous system were known. Here, we report that forced expression of GATA-3(More)
  • 1