Learn More
Plants have specialized organs for distinct functions. Leaves perform photosynthesis and fix carbon, whereas roots absorb water and minerals. To distribute resources between these organs, plants have a vasculature composed of phloem and xylem. The xylem conducts water and minerals from the roots up to the shoots. The phloem transports carbon-and(More)
In most plants, sucrose is exported from source leaves to carbon-importing sink tissues to sustain their growth and metabolism. Apoplastic phloem-loading species require sucrose transporters (SUTs) to transport sucrose into the phloem. In many dicot plants, genetic and biochemical evidence has established that SUT1-type proteins function in phloem loading.(More)
Auxin plays a fundamental role in organogenesis in plants. Multiple pathways for auxin biosynthesis have been proposed, but none of the predicted pathways are completely understood. Here, we report the positional cloning and characterization of the vanishing tassel2 (vt2) gene of maize (Zea mays). Phylogenetic analyses indicate that vt2 is a co-ortholog of(More)
More than a quarter of the primary productivity on land, and a large fraction of the food that humans consume, is contributed by plants that fix atmospheric CO(2) by C(4) photosynthesis. It has been estimated that transferring the C(4) pathway to C(3) crops could boost yield by 50% and also increase water use efficiency and reduce the need for fertilizer,(More)
Carbon is partitioned between export from the leaf and retention within the leaf, and this process is essential for all aspects of plant growth and development. In most plants, sucrose is loaded into the phloem of carbon-exporting leaves (sources), transported through the veins, and unloaded into carbon-importing tissues (sinks). We have taken a genetic(More)
Sap is driven through phloem sieve tubes by an osmotically generated pressure gradient between source and sink tissues. In many plants, source pressure results from thermodynamically active loading in which energy is used to transfer sucrose (Suc) from mesophyll cells to the phloem of leaf minor veins against a concentration gradient. However, in some(More)
Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many(More)
The phloem is often regarded as a relatively straightforward transport system composed of loading (collection), long-distance (transport), and unloading (release) zones. While this simple view is necessary and useful in many contexts, it belies the reality, which is that the phloem is inherently complex. At least three types of sieve element-companion cell(More)
Patterning of the floral organs is exquisitely controlled and executed by four classes of homeotic regulators. Among these, the class B and class C floral homeotic regulators are of central importance as they specify the male and female reproductive organs. Inappropriate induction of the class B gene APETALA3 (AP3) and the class C gene AGAMOUS (AG) causes(More)
In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves(More)