Thomas L Poulos

Learn More
The crystal structure of horseradish peroxidase isozyme C (HRPC) has been solved to 2.15 A resolution. An important feature unique to the class III peroxidases is a long insertion, 34 residues in HRPC, between helices F and G. This region, which defines part of the substrate access channel, is not present in the core conserved fold typical of peroxidases(More)
Electron microscopy (EM) is the standard method for imaging cellular structures with nanometer resolution, but existing genetic tags are inactive in most cellular compartments or require light and can be difficult to use. Here we report the development of 'APEX', a genetically encodable EM tag that is active in all cellular compartments and does not require(More)
The crystal structure of the complex between the heme- and FMN-binding domains of bacterial cytochrome P450BM-3, a prototype for the complex between eukaryotic microsomal P450s and P450 reductase, has been determined at 2.03 A resolution. The flavodoxin-like flavin domain is positioned at the proximal face of the heme domain with the FMN 4.0 and 18.4 A from(More)
The substrate-bound structures of two cytochrome P450s, P450cam and P450eryF, are known. While these structures reveal important features that control substrate specificity, the problem of how conformational changes allow for substrate entry and product release remains unsolved. The structure of the haem domain of the bacterial fatty acid hydroxylase,(More)
Cytochrome P450 14alpha-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14alpha-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole,(More)
Nitric oxide, a key signaling molecule, is produced by a family of enzymes collectively called nitric oxide synthases (NOS). Here, we report the crystal structure of the heme domain of endothelial NOS in tetrahydrobiopterin (H4B)-free and -bound forms at 1.95 A and 1.9 A resolution, respectively. In both structures a zinc ion is tetrahedrally coordinated to(More)
The crystal structure of the major lignin peroxidase isozyme from Phanerocheate chrysosporium has been refined to an R = 0.15 for data between 8 A and 2.03 A. The refined model consists of 2 lignin peroxidase molecules in the asymmetric unit, 2 calcium ions per monomer, 1 glucosamine per monomer N-linked to Asn-257, and 476 water molecules per asymmetric(More)
The crystal structure of Pseudomonas putida cytochrome P450cam with its substrate, camphor, bound has been refined to R = 0.19 at a normal resolution of 1.63 A. While the 1.63 A model confirms our initial analysis based on the 2.6 A model, the higher resolution structure has revealed important new details. These include a more precise assignment of sequence(More)
The crystal structure of manganese peroxidase (MnP) from the lignin-degrading basidiomycetous fungus Phanerochaete chrysosporium has been solved using molecular replacement techniques and refined to R = 0.20 at 2.0 A. The overall structure is similar to that of two other fungal peroxidases, lignin peroxidase from P. chrysosporium and Arthromyces ramosus(More)
BACKGROUND Peroxidases catalyze a wide variety of peroxide-dependent oxidations. Based on sequence alignments, heme peroxidases have been divided into three classes. Crystal structures are available for peroxidases of classes I and II, but until now no structure has been determined for class III, the classical extracellular plant peroxidases. RESULTS The(More)