Learn More
The network loading problem (NLP) is a specialized capacitated network design problem in which prescribed point-to-point demand between various pairs of nodes of a network must be met by installing (loading) a capacitated facility. We can load any number of units of the facility on each of the arcs at a specified arc dependent cost. The problem is to(More)
We study a generic minimization problem with separable non-convex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory.
Growing demand, increasing diversity of services, and advances in transmission and switching technologies are prompting telecommunication companies to rapidly expand and modernize their networks. This paper develops and tests a decomposition methodology to generate cost-effective expansion plans, with performance guarantees, for one major component of the(More)
Given an undirected network with L possible facility types for each edge, and a partition of the nodes into L levels, the Multi-level Network Design (MLND) problem seeks a fixed cost minimizing design that spans all the nodes and connects the nodes at each level by facilities of the corresponding or higher type. This problem generalizes the well-known(More)