Learn More
During flapping flight, insect wings must withstand not only fluid-dynamic forces, but also inertial-elastic forces generated by the rapid acceleration and deceleration of their own mass. Estimates of overall aerodynamic and inertial forces vary widely, and the relative importance of these forces in determining passive wing deformations remains unknown. If(More)
Both kinematics and morphology are critical determinants of performance in flapping flight. However, the functional consequences of changes in these traits are not yet well understood. Traditional aerodynamic studies of planform wing shape have suggested that high-aspect-ratio wings generate more force per area and perform more efficiently than(More)
The inverse problem of hovering flight, that is, the range of wing movements appropriate for sustained flight at a fixed position and orientation, was examined by developing a simulation of the hawkmoth Manduca sexta. Inverse problems arise when one is seeking the parameters that are required to achieve a specified model outcome. In contrast, forward(More)
Dipteran flight requires rapid acquisition of mechanosensory information provided by modified hindwings known as halteres. Halteres experience torques resulting from Coriolis forces that arise during body rotations. Although biomechanical and behavioral data indicate that halteres detect Coriolis forces, there are scant data regarding neural encoding of(More)
Control theory arose from a need to control synthetic systems. From regulating steam engines to tuning radios to devices capable of autonomous movement, it provided a formal mathematical basis for understanding the role of feedback in the stability (or change) of dynamical systems. It provides a framework for understanding any system with regulation via(More)
A growing body of evidence indicates that a majority of insects experience some degree of wing deformation during flight. With no musculature distal to the wing base, the instantaneous shape of an insect wing is dictated by the interaction of aerodynamic forces with the inertial and elastic forces that arise from periodic accelerations of the wing. Passive(More)
Insect antennae are sensory organs involved in a variety of behaviors, sensing many different stimulus modalities. As mechanosensors, they are crucial for flight control in the hawkmoth Manduca sexta. One of their roles is to mediate compensatory reflexes of the abdomen in response to rotations of the body in the pitch axis. Abdominal motions, in turn, are(More)
A temperature gradient throughout the dominant flight muscle (dorsolongitudinal muscle, DLM(1)) of the hawkmoth Manduca sexta, together with temperature-dependent muscle contractile rates, demonstrates that significant spatial variation in power production is possible within a single muscle. Using in situ work-loop analyses under varying muscle temperatures(More)
Neuromechanics seeks to understand how muscles, sense organs, motor pattern generators, and brain interact to produce coordinated movement, not only in complex terrain but also when confronted with unexpected perturbations. Applications of neuromechanics include ameliorating human health problems (including prosthesis design and restoration of movement(More)
Flying insects have evolved sophisticated sensory capabilities to achieve rapid course control during aerial maneuvers. Among two-winged insects such as houseflies and their relatives, the hind wings are modified into club-shaped, mechanosensory halteres, which detect Coriolis forces and thereby mediate flight stability during maneuvers. Here, we show that(More)