Learn More
ClC chloride channels possess a homodimeric structure in which each monomer contains an independent chloride ion pathway. ClC channel gating is regulated by chloride ion concentration, pH and voltage. Based on structural and physiological evidence, it has been proposed that a glutamate residue on the extracellular end of the selectivity filter acts as a(More)
H+/Cl- antiport behavior has recently been observed in bacterial chloride channel homologs and eukaryotic CLC-family proteins. The detailed molecular-level mechanism driving the stoichiometric exchange is unknown. In the bacterial structure, experiments and modeling studies have identified two acidic residues, E148 and E203, as key sites along the proton(More)
Quasichemical theory is utilized to analyze the relative roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl(-), Br(-), and I(-). Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The total(More)
We present a new approach for simulating the motions of flexible polyelectrolyte chains based on the continuous kink-jump Monte Carlo technique coupled to a lattice field theory based calculation of the Poisson-Boltzmann (PB) electrostatic free energy "on the fly." This approach is compared to the configurational-bias Monte Carlo technique, in which the(More)
The finely tuned structures of membrane channel proteins allow selective passage of ions through the available aqueous pores. To understand channel function, it is crucial to locate the pores and study their physical and chemical properties. Here, we propose a new pore-searching algorithm (TransPath), which uses the Configurational Bias Monte Carlo (CBMC)(More)
A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for(More)
Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion(More)
The Quasichemical Theory (QCT) involves a length-scale organization of solvation thermodynamics. The QCT has been employed in studies of solutes ranging in size from small molecules and ions to proteins. There are three contributions to the QCT free energy: (1) an inner-shell term that includes the direct solute-solvent chemical interactions, (2) an(More)