Thomas Kupke

Learn More
We investigated the role of epiQ in the biosynthesis of the lantibiotic epidermin. epiQ was essential for epidermin production. It was shown that EpiQ controls epidermin production by transcriptionally activating the epiA promoter, used for transcription of most of the epidermin biosynthetic genes. Additional copies of epiQ increased epidermin production in(More)
In bacteria, coenzyme A is synthesized in five steps from d-pantothenate. The Dfp flavoprotein catalyzes the synthesis of the coenzyme A precursor 4'-phosphopantetheine from 4'-phosphopantothenate and cysteine using the cofactors CTP and flavine mononucleotide via the phosphopeptide-like compound 4'-phosphopantothenoylcysteine. The synthesis of(More)
The lantibiotic Pep5 is produced by Staphylococcus epidermidis 5. Pep5 production and producer immunity are associated with the 20-kb plasmid pED503. A 1.3-kb KpnI fragment of pED503, containing the Pep5 structural gene pepA, was subcloned into the Escherichia coli-Staphylococcus shuttle vector pCU1, and the recombinant plasmid pMR2 was transferred to the(More)
Spindle pole bodies (SPBs), like nuclear pore complexes, are embedded in the nuclear envelope (NE) at sites of fusion of the inner and outer nuclear membranes. A network of interacting proteins is required to insert a cytoplasmic SPB precursor into the NE. A central player of this network is Nbp1 that interacts with the conserved integral membrane protein(More)
Several newly reported post-translational modification reactions are involved in lantibiotic biosynthesis. A short overview of the present knowledge on the post-translational modifications and on the enzymes involved in lantibiotic biosynthesis is given. The oxidative decarboxylation of the epidermin precursor peptide EpiA is described in detail. The(More)
The flavoprotein EpiD catalyzes the COOH-terminal oxidative decarboxylation of the lantibiotic precursor peptide EpiA. Variations of the COOH-terminal heptapeptide S1FNSYCC7 of EpiA were used for determining the substrate specificity of EpiD. When Cys7 was replaced by serine, cysteine-amide, homocysteine, or a thioether amino acid residue, no reaction with(More)
The purification, cloning, and complete cDNA-derived sequence of a 17-kDa protein of Dictyostelium discoideum are described. This protein binds to F-actin in a pH-dependent and saturable manner. It induces actin polymerization in the absence of Mg2+ or K+, and is enriched in the submembranous region of the amoeboid cells as indicated by immunofluorescence(More)
Coenzyme A is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. Coenzyme A is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes in bacteria and human have all been identified and characterized. Coenzyme A biosynthesis in(More)
The Arabidopsis thaliana flavoprotein AtHAL3a is related to plant growth and salt and osmotic tolerance. AtHAL3a shows sequence homology to the bacterial flavoproteins EpiD and Dfp. EpiD, Dfp, and AtHAL3a are members of the homo-oligomeric flavin-containing Cys decarboxylase (HFCD) protein family. We demonstrate that AtHAL3a catalyzes the decarboxylation of(More)
The epidermin biosynthetic reaction between the flavoprotein EpiD and the precursor peptide EpiA was investigated by reversed-phase chromatography and ion spray mass spectrometry. Several products with molecular masses 46 and 104 Da less than that of EpiA were observed; these results were confirmed by using an MBP-EpiD fusion protein as enzyme and the(More)