Thomas Kuenzler

Learn More
The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and(More)
Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung(More)
PURPOSE The aim of this study was to compare the dose calculation accuracy of advanced kernel-based methods and Monte Carlo algorithms in commercially available treatment planning systems. MATERIALS AND METHODS Following dose calculation algorithms and treatment planning (TPS) systems were compared: the collapsed cone (CC) convolution algorithm available(More)
PURPOSE To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. METHODS AND MATERIALS A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a(More)
Multileaf collimators (MLCs) are in clinical use for more than a decade and are a well accepted tool in radiotherapy. For almost each MLC design different empirical or semianalytical methods have been presented for calculating output ratios in air for irregularly shaped beams. However, until now no clear recommendations have been given on how to handle(More)
Factor based methods for absorbed dose or monitor unit calculations are often based on separate data sets for open and wedged beams. The determination of basic beam parameters can be rather time consuming, unless equivalent square methods are applied. When considering irregular wedged beams shaped with a multileaf collimator, parametrization methods for(More)
  • 1