Thomas Kim Kjeldsen

Learn More
This paper presents the Subsurface Light Propagation Volume (SSLPV) method for real-time approximation of subsurface scattering effects in dynamic scenes with changing mesh topology and lighting. SSLPV extends the Light Propagation Volume (LPV) technique for indirect illumination in video games. We introduce a new consistent method for injecting flux from(More)
BACKGROUND Multiple neurological disorders including Alzheimer's disease (AD), mesial temporal sclerosis, and mild traumatic brain injury manifest with volume loss on brain MRI. Subtle volume loss is particularly seen early in AD. While prior research has demonstrated the value of this additional information from quantitative neuroimaging, very few(More)
Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some translucency effects in the rendered result. We present an improved(More)
  • 1