Learn More
In many cell types, glycosylphosphatidylinositol (GPI)-anchored proteins are sequestered in detergent-resistant membrane rafts. These are plasma membrane microdomains enriched in glycosphingolipids and cholesterol and are suggested to be platforms for cell signaling. Concomitant with the synthesis of myelin glycosphingolipids, maturing oligodendrocytes(More)
The myelin sheath synthesized by oligodendrocytes insulates central nervous system axons and is a specialized subdomain of the plasma membrane, containing a restricted pattern of proteins and lipids. Myelin is enriched in glycosphingolipids and cholesterol, a lipid environment favored by glycosylphosphatidylinositol (GPI)-anchored proteins, which associate(More)
Heterodimerization has been shown to modulate the ligand binding, signaling, and trafficking properties of G protein-coupled receptors. However, to what extent heterodimerization may alter agonist-induced phosphorylation and desensitization of these receptors has not been documented. We have recently shown that heterodimerization of sst(2A) and sst(3)(More)
Morphine is a poor inducer of micro-opioid receptor (MOR) internalization, but a potent inducer of cellular tolerance. Here we show that, in contrast to full agonists such as [D-Ala(2)-MePhe(4)-Gly-ol]enkephalin (DAMGO), morphine stimulated a selective phosphorylation of the carboxy-terminal residue 375 (Ser(375)). Ser(375) phosphorylation was sufficient(More)
Recent evidence suggests that opioid analgesia and tolerance can be modulated by metabotropic glutamate receptors. Therefore, we studied the functional coupling and desensitization of the micro-opioid receptor (MOR) in human embryonic kidney (HEK) 293 cells which co-express metabotropic glutamate receptor 5 (mGluR5). As demonstrated by the(More)
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is an important mechanism for regulating signaling transduction of functional receptors at the plasma membrane. We demonstrate here that both caveolae/lipid-rafts- and clathrin-coated-pits-mediated pathways were involved in agonist-induced endocytosis of the cannabinoid type 1 receptor(More)
The micro-opioid receptor (MOR1) and the substance P receptor (NK1) coexist and functionally interact in nociceptive brain regions; however, a molecular basis for this interaction has not been established. Using coimmunoprecipitation and bioluminescence resonance energy transfer (BRET), we show that MOR1 and NK1 can form heterodimers in HEK 293 cells(More)
PURPOSE Investigation of the clinical, imaging, and in vivo MR spectroscopy (MRS) characteristics of disorders of mitochondrial function. METHODS Clinical, imaging (five CT and 20 MR examinations), and MRS (six studies in five patients) findings in 19 patients with mitochondrial disorders were retrospectively reviewed. Results were critically analyzed(More)
Agonist exposure of many G protein-coupled receptors induces a rapid receptor phosphorylation and uncoupling from G proteins. Resensitization of these desensitized receptors requires endocytosis and subsequent dephosphorylation. Using a yeast two-hybrid screen, the rat mu-opioid receptor (MOR1, also termed MOP) was found to be associated with phospholipase(More)
The rat mu opioid receptor is alternatively spliced into two isoforms (MOR1 and MOR1B) which differ in length and amino acid composition at the carboxyl terminus. When stably expressed in HEK 293 cells, both splice variants bind the mu receptor agonist [D-Ala2,N-Me-Phe4,-Gly-ol5]enkephalin (DAMGO) with similar affinity and exhibit functional coupling to(More)