Learn More
Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically(More)
SOAP3 is the first short read alignment tool that leverages the multi-processors in a graphic processing unit (GPU) to achieve a drastic improvement in speed. We adapted the compressed full-text index (BWT) used by SOAP2 in view of the advantages and disadvantages of GPU. When tested with millions of Illumina Hiseq 2000 length-100 bp reads, SOAP3 takes < 30(More)
To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously. Compared(More)
As the cost efficiency of the next generation DNA sequencing technology keeps improving, there is an ever-increasing demand for high-throughput software to align the enormous number of short reads (patterns) with reference genomes (such as the human genome). In the past few years, a number of very fast alignment software (e.g., Maq, SOAP2, ZOOM, Bowtie,(More)
The secondary structure of an ncRNA molecule is known to play an important role in its biological functions. Aligning a known ncRNA to a target candidate to determine the sequence and structural similarity helps in identifying de novo ncRNA molecules that are in the same family of the known ncRNA. However, existing algorithms cannot handle complex(More)
Structural alignment is useful in identifying members of ncRNAs. Existing tools are all based on the secondary structures of the molecules. There is evidence showing that tertiary interactions (the interaction between a single-stranded nucleotide and a base-pair) in triple helix structures are critical in some functions of ncRNAs. In this article, we(More)
Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data(More)
MOTIVATION Structural alignment of RNA is found to be a useful computational technique for idenitfying non-coding RNAs (ncRNAs). However, existing tools do not handle structures with pseudoknots. Although algorithms exist that can handle structural alignment for different types of pseudoknots, no software tools are available and users have to determine the(More)
BACKGROUND Non-coding RNAs (ncRNAs) are known to be involved in many critical biological processes, and identification of ncRNAs is an important task in biological research. A popular software, Infernal, is the most successful prediction tool and exhibits high sensitivity. The application of Infernal has been mainly focused on small suspected regions. We(More)
In the sequencing process, reads of the sequence are generated, then assembled to form contigs. New technologies can produce reads faster with lower cost and higher coverage. However, these reads are shorter. With errors, short reads make the assembly step more difficult. Chaisson et al. (2004) proposed an algorithm to correct the reads prior to the(More)