Learn More
The kinetic parameters of D-glucose transport in liposomes reconstituted with the purified glucose transporter were determined. Net uptake and efflux both had Km values of 0.7 to 1.2 mM and Vmax values of 1.6 mumol/mg of protein/min. Equilibrium exchange had a Km of 35 mM and a Vmax of 50 mumol/mg of protein/min. By separating the liposomes from(More)
Adenylate deaminase from rat skeletal muscle has been studied with the objective of understanding how the activity of the enzyme is regulated in vivo. ATP and GTP inhibit the enzyme at low concentrations in the presence of 150 mM KCl. The ATP inhibition is reversed as the ATP concentration is raised to physiological levels. The GTP inhibition is reversed as(More)
The glucose transporter is now identified but may have modifications or other subunits that control its activity. The kinetics and inhibitor binding studies are consistent with the carrier model with different degrees of asymmetry and a single binding site that varies in specificity depending on the conformation of the protein. The physical structure could(More)
Fructose-1,6-bisphosphate (FBP) helps preserve heart and other organs under ischemic conditions. Previous studies indicated that it can be taken up by various cell types. Here we extended observations from our group that FBP could penetrate artificial lipid bilayers and be taken up by cardiac myocytes, comparing the uptake of FBP to that of L-glucose. Using(More)
Our previous studies on the acute regulation of glucose transport in perfused rat hearts were extended to explore further the mechanism of regulation by anoxia; to test the effects of palmitate, a transport inhibitor; and to compare the translocation of two glucose transporter isoforms (GLUT1 and GLUT4). Following heart perfusions under various conditions,(More)
Inorganic pyrophosphate and triphosphate inhibit adenylate deaminase from rat skeletal muscle with K1 values of 10 and 1.5 microM, respectively, in the presence of 150 mM KCl at pH 7. They act by reducing the apparent affinity of the enzyme for AMP, with relatively small effects on Vmax. The inhibitions are diminished by H+, the KI values increasing two- to(More)
Previously we showed that hypoxia in heart stimulates glucose transport via translocation of glucose transporters from intracellular membranes to the plasma membrane. We later showed that rotenone, an inhibitor of oxidative phosphorylation, also decreased intracellular transporters. Here, using another membrane fractionation technique, we show that rotenone(More)
BACKGROUND Previous studies from our project found that fructose-1,6-bisphosphate (FBP) enhanced the functional recovery of animal hearts after hypothermic preservation, and that rat cardiac myocytes take up FBP at 3 degrees C. In this study we tested the effects of FBP, as well as other compounds related to glycolysis and pyruvate oxidation, on the(More)