Learn More
Boosted decision trees are among the most popular learning techniques in use today. While exhibiting fast speeds at test time, relatively slow training renders them impractical for applications with real-time learning requirements. We propose a principled approach to overcome this drawback. We prove a bound on the error of a decision stump given its(More)
Group-Lasso estimators, useful in many applications, suffer from lack of meaningful variance estimates for regression coefficients. To overcome such problems, we propose a full Bayesian treatment of the Group-Lasso, extending the standard Bayesian Lasso, using hierarchical expansion. The method is then applied to Poisson models for contingency tables using(More)
We present a probabilistic model for clustering of objects represented via pairwise dissimilari-ties. We propose that even if an underlying vec-torial representation exists, it is better to work directly with the dissimilarity matrix hence avoiding unnecessary bias and variance caused by em-beddings. By using a Dirichlet process prior we are not obliged to(More)
In the field of neuroanatomy, automatic segmentation of electron microscopy images is becoming one of the main limiting factors in getting new insights into the functional structure of the brain. We propose a novel framework for the segmentation of thin elongated structures like membranes in a neuroanatomy setting. The probability output of a random forest(More)
The histological assessment of human tissue has emerged as the key challenge for detection and treatment of cancer. A plethora of different data sources ranging from tissue microarray data to gene expression, proteomics or metabolomics data provide a detailed overview of the health status of a patient. Medical doctors need to assess these information(More)
Renal cell carcinoma (RCC) can be diagnosed by histological tissue analysis where exact counts of cancerous cell nuclei are required. We propose a completely automated image analysis pipeline to predict the survival of RCC patients based on the analysis of immunohistochemical staining of MIB-1 on tissue microarrays. A random forest classifier detects cell(More)
In neuroanatomy, automatic geometry extraction of neurons from electron microscopy images is becoming one of the main limiting factors in getting new insights into the functional structure of the brain. We propose a novel framework for tracing neuronal processes over serial sections for 3d reconstructions. The automatic processing pipeline combines the(More)
We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the(More)
Renal cell carcinoma (RCC) is one of the ten most frequent malignancies in Western societies and can be diagnosed by histological tissue analysis. Current diagnostic rules rely on exact counts of cancerous cell nuclei which are manually counted by pathologists. We propose a complete imaging pipeline for the automated analysis of tissue microarrays of renal(More)