Thomas J. Dilling

Learn More
Thoracic cancer treatment presents dosimetric difficulties due to respiratory motion and lung inhomogeneity. Monte Carlo and deformable image registration techniques have been proposed to be used in four-dimensional (4D) dose calculations to overcome the difficulties. This study validates the 4D Monte Carlo dosimetry with measurement, compares 4D dosimetry(More)
PURPOSE Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite(More)
Ventilation imaging using 4D CT is a convenient and low-cost functional imaging methodology which might be of value in radiotherapy treatment planning to spare functional lung volumes. Deformable image registration (DIR) is needed to calculate ventilation imaging from 4D CT. This study investigates the dependence of calculated ventilation on DIR methods and(More)
Quantum noise is common in CT images and is a persistent problem in accurate ventilation imaging using 4D-CT and deformable image registration (DIR). This study focuses on the effects of noise in 4D-CT on DIR and thereby derived ventilation data. A total of six sets of 4D-CT data with landmarks delineated in different phases, called point-validated(More)
PURPOSE The 4D-CT data used for comparing a patient's ventilation distributions before and after lung radiotherapy are acquired at different times. As a result, an additional variable--the tidal volume (TV)--can alter the results. Therefore, in this paper we propose to normalize the ventilation to the same TV to eliminate that uncertainty. METHODS(More)
  • 1