Thomas J. A. Snoeks

Learn More
In cancer surgery, intra-operative assessment of the tumor-free margin, which is critical for the prognosis of the patient, relies on the visual appearance and palpation of the tumor. Optical imaging techniques provide real-time visualization of the tumor, warranting intra-operative image-guided surgery. Within this field, imaging in the near-infrared light(More)
In recent years, molecular imaging gained significant importance in biomedical research. Optical imaging developed into a modality which enables the visualization and quantification of all kinds of cellular processes and cancerous cell growth in small animals. Novel gene reporter mice and cell lines and the development of targeted and cleavable fluorescent(More)
Bioluminescence imaging (BLI) has shown its appeal as a sensitive technique for in vivo whole body optical imaging. However, the development of injectable tumor-specific near-infrared fluorescent (NIRF) probes makes fluorescence imaging (FLI) a promising alternative to BLI in situations where BLI cannot be used or is unwanted (e.g., spontaneous transgenic(More)
PURPOSE Near-infrared (NIR) fluorescence imaging can provide the surgeon with real-time visualization of, e.g., tumor margins and lymph nodes. We describe and evaluate the Artemis, a novel, handheld NIR fluorescence camera. PROCEDURES We evaluated minimal detectable cell numbers (FaDu-luc2, 7D12-IRDye 800CW), preclinical intraoperative detection of(More)
PURPOSE Quantification of osteolysis is crucial for monitoring treatment effects in preclinical research and should be based on MicroCT data rather than conventional 2D radiographs to obtain optimal accuracy. However, data assessment is greatly complicated in the case of 3D data. This paper presents an automated method to follow osteolytic lesions(More)
In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing(More)
PURPOSE Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of(More)
Multi diameter single fiber reflectance (MDSFR) spectroscopy is a non-invasive optical technique based on using multiple fibers of different diameters to determine both the reduced scattering coefficient (μs') and a parameter γ that is related to the angular distribution of scattering, where γ = (1-g2)/(1-g1) and g1 and g2 the first and second moment of the(More)
Evaluation of resection margins during cancer surgery can be challenging, often resulting in incomplete tumour removal. Fluorescence-guided surgery (FGS) aims to aid the surgeon to visualize tumours and resection margins during surgery. FGS relies on a clinically applicable imaging system in combination with a specific tumour-targeting contrast agent. In(More)
PURPOSE Most effective antitumor therapies induce tumor cell death. Non-invasive, rapid and accurate quantitative imaging of cell death is essential for monitoring early response to antitumor therapies. To facilitate this, we previously developed a biocompatible necrosis-avid near-infrared fluorescence (NIRF) imaging probe, HQ4, which was radiolabeled with(More)
  • 1