Thomas Hood

Learn More
This paper introduces design principles for modular Bayesian fusion systems which can (i) cope with large quantities of heterogeneous information and (ii) can adapt to changing constellations of information sources on the fly. The presented approach exploits the locality of relations in causal probabilistic processes, which facilitates decentralized(More)
—In this paper we show that causal probabilistic models can facilitate the design of robust and flexible fusion systems. Observed events resulting from stochastic causal processes can be modeled with the help of causal Bayesian networks, mathematically rigorous and compact probabilistic causal models. Bayesian networks explicitly represent conditional(More)
— We introduce Distributed perception networks (DPNs), a distributed architecture for efficient and reliable fusion of large quantities of heterogeneous and noisy information. DPNs consist of agents, processing nodes with limited fusion capabilities, which cooperate and can autonomously form arbitrarily large compound classifiers. DPNs make use of causal(More)
  • 1