Thomas Haller

Learn More
Pulmonary surfactant, secreted via exocytosis of lamellar bodies (LB) by alveolar type II (AT II) cells, maintains low alveolar surface tension and is therefore essential for normal lung function. Here we describe real-time monitoring of exocytotic activity in these cells by visualizing and quantifying LB fusion with the plasma membrane (PM). Two approaches(More)
To test for a possible role of lysosomes in intracellular Ca2+ homeostasis, the effects of glycyl-L-phenylalanine-beta-naphthylamide (GPN), known to permeabilize these organelles by osmotic swelling, were studied in single MDCK cells. Fluorescence of acridine orange, rhodol green dextran, lysotracker green and FITC-dextran indicated that GPN (0.2 mmol/l)(More)
Pulmonary surfactant is secreted via exocytosis of lamellar bodies (LBs) by alveolar type II cells. Here we analyzed the dependence of LB exocytosis on intracellular Ca(2+) concentration ([Ca(2+)](i)). In fura 2-loaded cells, [Ca(2+)](i) was selectively elevated by flash photolysis of a cell-permeant caged Ca(2+) compound (o-nitrophenyl EGTA-AM) or by(More)
Long-term, simultaneous, measurements of cytoplasmic free Ca(2+) concentrations and single exocytotic fusion events in surfactant-secreting type II cells were performed. All fusion (constitutive, phorbol ester-induced, and agonist-induced) was Ca(2+)-dependent. Kinetic analysis revealed that agonist (adenosine triphosphate [ATP])-induced fusion exhibited a(More)
Exocytosis is fundamental in biology and requires an orchestra of proteins and other constituents to fuse a vesicle with the plasma membrane. Although the molecular fusion machinery appears to be well conserved in evolution, the process itself varies considerably with regard to the diversity of physico-chemical and structural factors that govern the delay(More)
We present a new concept as well as the implementation of an FPGA-based reconfigurable platform, the Erlangen Slot Machine (ESM). One main advantage of this platform is the possibility for each module to access its periphery independent from its location through a programmable crossbar, allowing an unrestricted relocation of modules on the device.(More)
Measurement of lamellar body (LB) exocytosis at high spatial and temporal resolution was recently enabled by fluorescence of the dye FM 1-43 (FFM1-43). Here, the capabilities of this method were further examined and extended by simultaneous measurement of the cell membrane capacitance (Cm) and laser-scanning confocal microscopy. Step increases in Cm were(More)
In several cell types, Ca2+ release from intracellular Ca2+ stores by Ins(1,4,5)P3 elicits Ca2+ influx from the extracellular space into the cytoplasm, termed store-operated Ca2+ entry (SOCE). In MDCK cells, the Ins(1,4,5)P3-sensitive Ca2+ store giving rise to SOCE essentially overlaps with the thapsigargin (TG)-sensitive store. Recent evidence suggests(More)
It is well established that the release of surfactant phospholipids into the alveolar lumen proceeds by the exocytosis of lamellar bodies (LBs), the characteristic storage organelles of surfactant in alveolar type II cells. Consequently, the fusion of LBs with the plasma membrane and the formation of exocytotic fusion pores are key steps linking cellular(More)
This article examines the manner in which some new methodologies and novel concepts have contributed to our understanding of how pulmonary surfactant reduces alveolar surface tension. Investigations utilizing small angle X-ray diffraction, inverted interface fluorescence microscopy, time of flight-secondary ion mass spectroscopy, atomic force microscopy,(More)