Thomas Greif

Learn More
Probabilistic models with hidden variables such as proba-bilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA) have recently become popular for solving several image content analysis tasks. In this work we will use a pLSA model to represent images for performing scene classification. We evaluate the influence of the type of local(More)
We introduce a two–dimensional kinematic model for cyclic motions of humans, which is suitable for the use as temporal prior in any Bayesian tracking framework. This human motion model is solely based on simple kinematic properties: the joint accelerations. Distributions of joint accelerations subject to the cycle progress are learned from training data. We(More)
We present a novel approach to 2D and 3D human pose estimation in monocular images by building on and improving recent advances in this field. We take the full body pose as a combination of a 3D pose and a viewpoint and in this way define classes that are then learned by a classifier. Compared to part based approaches, our approach does not suffer from(More)
  • 1