Thomas Gorniak

  • Citations Per Year
Learn More
Single pulse imaging with radiation provided by free-electron laser sources is a promising approach towards X-ray microscopy, which is expected to provide high resolution images of biological samples unaffected by radiation damage. One fully coherent imaging technique for this purpose is digital in-line holography. Key to its successful application is the(More)
The unique strengths of x-ray microscopy are high penetration depth and near-edge resonances that provide chemical information. We use ptychography, a coherent diffractive imaging technique that disposes of the requirement for isolated specimens, and demonstrate resonant imaging by exploiting resonances near the oxygen K edge to differentiate between two(More)
Coherent x-ray diffractive microscopy enables full reconstruction of the complex transmission function of an isolated object to diffraction-limited resolution without relying on any optical elements between the sample and detector. In combination with ptychography, also specimens of unlimited lateral extension can be imaged. Here we report on an application(More)
X-ray ptychography is a rapidly developing phase retrieval technique that combines the experimental advantages of coherent diffractive imaging with the possibility to image extended specimens. Data collection requires imaging at several scan points with high positional accuracy, which implies susceptibility to mechanical drift. This is a well-known problem(More)
Melanin within melanosomes exists as eumelanin or pheomelanin. Distributions of these melanins have been studied extensively within tissues, but less often within individual melanosomes. Here, we apply X-ray fluorescence analysis with synchrotron radiation to survey the nanoscale distribution of metals within purified melanosomes of mice. The study allows a(More)
The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome(More)
Multi-drug resistant bacteria are currently undermining our health care system worldwide. While novel antimicrobial drugs, such as antimicrobial peptides, are urgently needed, identification of new modes of action is money and time consuming, and in addition current approaches are not available in a high throughput manner. Here we explore how small angle(More)
Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences--determining the color of skin, hair and the iris--they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining(More)
A ptychographical coherent diffractive imaging experiment in the water window with focused soft X-rays at 500 eV is reported. An X-ray beam with high degree of coherence was selected for ptychography at the P04 beamline of PETRA III synchrotron radiation source. The beam coherence was measured with the newly developed non-redundant array method, and a(More)
The spatial coherence of free-electron laser radiation in the water window spectral range was studied, using the third harmonic (λ<(3rd) = 2.66 nm) of DESY's Free-electron LASer in Hamburg (FLASH). Coherent single pulse diffraction patterns of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilamellar lipid stacks have been recorded. The intensity(More)