Thomas Goldstein

Learn More
We introduce a new method for location recovery from pairwise directions that leverages an efficient convex program that comes with exact recovery guarantees, even in the presence of adversarial outliers. When pairwise directions represent scaled relative positions between pairs of views (estimated for instance with epipolar geometry) our method can be used(More)
We synthesized distorted octahedral (T') molybdenum ditelluride (MoTe2) and investigated its vibrational properties with Raman spectroscopy, density functional theory, and symmetry analysis. Compared to results from the high-temperature centrosymmetric monoclinic (T'mo) phase, four new Raman bands emerge in the low-temperature orthorhombic (T'or) phase,(More)
In visual recognition, sub-categorization has been proposed to deal with large intraclass variance of samples in a category. Instead of learning a single classifier for each category, discriminant sub-categorization approaches divide a category into several subcategories and simultaneously train classifiers for each sub-category. In this paper, we propose a(More)
Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We(More)
The topologically nontrivial and chemically functional distorted octahedral (T') transition-metal dichalcogenides (TMDCs) are a type of layered semimetal that has attracted significant recent attention. However, the properties of monolayer (1L) T'-TMDC, a fundamental unit of the system, are still largely unknown due to rapid sample degradation in air. Here(More)
The increasing complexity of deep learning architectures is resulting in training time requiring weeks or even months. This slow training is due in part to "vanishing gradients," in which the gradients used by back-propagation are extremely large for weights connecting deep layers (layers near the output layer), and extremely small for shallow layers (near(More)
PURPOSE A new treatment scheme coined as dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT) has recently been proposed to bridge the gap between IMRT and VMAT. By increasing the angular sampling of radiation beams while eliminating dispensable segments of the incident fields, DASSIM-RT is capable of providing improved(More)
  • 1