Learn More
We use near-infrared dynamic multiple scattering of light [diffusing-wave spectroscopy (DWS)] to detect the activation of the somato-motor cortex in 11 right-handed volunteers performing a finger opposition task separately with their right and left hands. Temporal autocorrelation functions g(1)(r,tau) of the scattered light field are measured during 100-s(More)
We present a technique for the measurement of temporal field autocorrelation functions of multiply scattered light with subsecond acquisition time. The setup is based on the parallel detection and autocorrelation of intensity fluctuations from statistically equivalent but independent speckles using a fiber bundle, an array of avalanche photodiodes, and a(More)
BACKGROUND Emotional stimuli are preferentially processed compared to neutral ones. Measuring the magnetic resonance blood-oxygen level dependent (BOLD) response or EEG event-related potentials, this has also been demonstrated for emotional versus neutral words. However, it is currently unclear whether emotion effects in word processing can also be detected(More)
" Diffuse correlation spectroscopy " (DCS) is a technology for non-invasive transcranial measurement of cerebral blood flow (CBF) that can be hybridized with " near-infrared spectroscopy " (NIRS). Taken together these methods hold potential for monitoring hemodynamics in stroke patients. We explore the utility of DCS and NIRS to measure effects of(More)
Calf blood flow was measured simultaneously in healthy human subjects (n = 7) during cuff inflation and deflation using near-infrared diffuse correlation spectroscopy (DCS) and arterial spin labeled perfusion MRI (ASL-MRI). The DCS and ASL-MRI data exhibited highly correlated absolute and relative dynamic flow responses in each individual (p < 0.001). Peak(More)
Four very low birth weight, very premature infants were monitored during a 12 • postural elevation using diffuse correlation spec-troscopy (DCS) to measure microvascular cerebral blood flow (CBF) and transcranial Doppler ultrasound (TCD) to measure macrovascular blood flow velocity in the middle cerebral artery. DCS data correlated significantly with peak(More)
We demonstrate a novel method for measuring the microrheology of soft viscoelastic media, based on cross correlating the thermal motion of pairs of embedded tracer particles. The method does not depend on the exact nature of the coupling between the tracers and the medium, and yields accurate rheological data for highly inhomogeneous materials. We(More)
Multispeckle diffusing-wave spectroscopy (DWS) is used to measure blood flow transients in the human visual cortex following stimulation by 7.5 Hz full-field and checkerboard flickering. The average decay time tau(d) characterizing the decay of the DWS autocorrelation function shows a biphasic behavior; within about 2 s after stimulation onset, tau(d)(More)
We develop a multiple particle tracking technique for making precise, localized measurements of the mechanical microenvironments of inhomogeneous materials. Using video microscopy, we simultaneously measure the Brownian dynamics of roughly one hundred fluorescent tracer particles embedded in a complex medium and interpret their motions in terms of local(More)