Learn More
When humans are exposed to hypoxia, systemic and intracellular changes operate together to minimise hypoxic injury and restore adequate oxygenation. Emerging evidence indicates that the hypoxia-inducible factor (HIF) family of transcription factors plays a central regulatory role in these homeostatic changes at both the systemic and cellular levels. HIF was(More)
An important goal in studying both human intelligence and artificial intelligence is to understand how a natural or an artificial learning system deals with the uncertainty and ambiguity of the real world. For a natural intelligence system such as a human toddler, the relevant aspects in a learning environment are only those that make contact with the(More)
Hypoxia is a major cause of pulmonary hypertension. Gene expression activated by the transcription factor hypoxia-inducible factor (HIF) is central to this process. The oxygen-sensing iron-dependent dioxygenase enzymes that regulate HIF are highly sensitive to varying iron availability. It is unknown whether iron similarly influences the pulmonary(More)
The hypoxia-inducible factors (HIFs; isoforms HIF-1α, HIF-2α, HIF-3α) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF. It arises(More)
BACKGROUND The von Hippel-Lindau tumour suppressor protein-hypoxia-inducible factor (VHL-HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of(More)
Oxygen-dependent prolyl hydroxylation of hypoxia-inducible factor (HIF) by a set of closely related prolyl hydroxylase domain enzymes (PHD1, 2 and 3) regulates a range of transcriptional responses to hypoxia. This raises important questions about the role of these oxygen-sensing enzymes in integrative physiology. We investigated the effect of both genetic(More)
The effects of hypoxia on gene transcription are mainly mediated by a transcription factor complex termed hypoxia-inducible factor (HIF). Genetic manipulation of animals and studies of humans with rare hereditary disease have shown that modifying the HIF pathway affects systems-level physiological responses to hypoxia. It is, however, an open question(More)
Multimodal interaction in everyday life seems so effortless. However, a closer look reveals that such interaction is indeed complex and comprises multiple levels of coordination, from high-level linguistic exchanges to low-level couplings of momentary bodily movements both within an agent and across multiple interacting agents. A better understanding of how(More)
Data-driven knowledge discovery is becoming a new trend in various scientific fields. In light of this, the goal of the present paper is to introduce a novel framework to study one interesting topic in cognitive and behavioral studies -multimodal communication between human-human and human-robot interaction. We present an overall solution from data capture,(More)