Learn More
Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a(More)
The transposon-like elements TBE1, Tec1, and Tec2 of hypotrichous ciliated protozoa appear to encode a protein that belongs to the IS630-Tc1 family of transposases. The Anabaena IS895 transposase also is placed in this family. We note that most family members transpose into the dinucleotide target, TA, and that members with eukaryotic hosts have a tendency(More)
The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA)(More)
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor "silent" germline micronuclear genome by a(More)
Despite comprising much of the eukaryotic genome, few transposons are active, and they usually confer no benefit to the host. Through an exaggerated process of genome rearrangement, Oxytricha trifallax destroys 95% of its germline genome during development. This includes the elimination of all transposon DNA. We show that germline-limited transposase genes(More)
Genome-wide DNA rearrangements occur in many eukaryotes but are most exaggerated in ciliates, making them ideal model systems for epigenetic phenomena. During development of the somatic macronucleus, Oxytricha trifallax destroys 95% of its germ line, severely fragmenting its chromosomes, and then unscrambles hundreds of thousands of remaining fragments by(More)
Mutation plays a central role in all evolutionary processes and is also the basis of genetic disorders. Established base-substitution mutation rates in eukaryotes range between ∼5 × 10(-10) and 5 × 10(-8) per site per generation, but here we report a genome-wide estimate for Paramecium tetraurelia that is more than an order of magnitude lower than any(More)
Deinococcus bacteria are extremely resistant to radiation, oxidation, and desiccation. Resilience to these factors has been suggested to be due to enhanced damage prevention and repair mechanisms, as well as highly efficient antioxidant protection systems. Here, using mutation-accumulation experiments, we find that the GC-rich Deinococcus radiodurans has an(More)
The 4.1 kbp TBE1 elements of Oxytricha fallax and Oxytricha trifallax are deduced to transpose into a centrisymmetric target, CAnTG, and to duplicate the central AnT. Despite conserved C(A4C4)2 telomeric repeats at their tips, free TBE1s found during macronuclear development are not linear but 4.1 kbp circles closed on one copy of the AnT target(More)