Learn More
Cochlear inner hair cells (IHCs) transmit acoustic information to spiral ganglion neurons through ribbon synapses. Here we have used morphological and physiological techniques to ask whether synaptic mechanisms differ along the tonotopic axis and within IHCs in the mouse cochlea. We show that the number of ribbon synapses per IHC peaks where the cochlea is(More)
Cochlear inner hair cells (IHCs) develop from pre-sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and(More)
At the presynaptic active zone, Ca²+ influx triggers fusion of synaptic vesicles. It is not well understood how Ca²+ channel clustering and synaptic vesicle docking are organized. Here, we studied structure and function of hair cell ribbon synapses following genetic disruption of the presynaptic scaffold protein Bassoon. Mutant synapses--mostly lacking the(More)
  • Tina Pangrsic, Livia Lasarow, Kirsten Reuter, Hideki Takago, Martin Schwander, Dietmar Riedel +8 others
  • 2010
Inner hair cell ribbon synapses indefatigably transmit acoustic information. The proteins mediating their fast vesicle replenishment (hundreds of vesicles per s) are unknown. We found that an aspartate to glycine substitution in the C(2)F domain of the synaptic vesicle protein otoferlin impaired hearing by reducing vesicle replenishment in the pachanga(More)
Sound coding at hair cell ribbon synapses is tightly regulated by Ca(2+). Here, we used patch-clamp, fast confocal Ca(2+) imaging and modeling to characterize synaptic Ca(2+) signaling in cochlear inner hair cells (IHCs) of hearing mice. Submicrometer fluorescence hotspots built up and collapsed at the base of IHCs within a few milliseconds of stimulus(More)
SNARE proteins mediate membrane fusion. Neurosecretion depends on neuronal soluble NSF attachment protein receptors (SNAREs; SNAP-25, syntaxin-1, and synaptobrevin-1 or synaptobrevin-2) and is blocked by neurotoxin-mediated cleavage or genetic ablation. We found that exocytosis in mouse inner hair cells (IHCs) was insensitive to neurotoxins and genetic(More)
  • Johann G. Zaller, Florian Heigl, Andrea Grabmaier, Claudia Lichtenegger, Katja Piller, Roza Allabashi +2 others
  • 2011
Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing(More)