Learn More
Primary cultures of rat and murine hippocampal neurons are widely used to reveal cellular mechanisms in neurobiology. Their use is limited, as culturing at low density is often not possible or is dependent on sophisticated methods. Here we present a novel method for culturing embryonic (E16.5) murine hippocampal neurons, using a spatially separated ring of(More)
The role of hyperphosphorylation of tau in Alzheimer's disease is still unsolved. Here we describe a novel transgenic mouse model, expressing a pseudohyperphosphorylated (PHP) variant of the longest human CNS tau isoform in forebrain neurons. We report that pseudohyperphosphorylation decreases phosphorylation at T205 while other sites (T212, S262) are less(More)
Abnormal tau-immunoreactive filaments are a hallmark of tauopathies, including Alzheimer's disease (AD). A higher phosphorylation ("hyperphosphorylation") state of tau protein may represent a critical event. To determine the potential role of tau hyperphosphorylation in these disorders, mutated tau proteins were produced where serine/threonine residues(More)
The establishment of axonal-somatodendritic polarity is an important event during neuronal development. The analysis of the underlying molecular events requires experimental models that display characteristic steps in the development of polarity and that are accessible for experimental manipulations. Here we show that human model neurons (NT2-N cells) can(More)
Frontotemporal dementia (FTD) is characterized by cognitive and behavioral changes and, in a significant subset of patients, Parkinsonism. Histopathologically, FTD frequently presents with tau-containing lesions, which in familial cases result from mutations in the MAPT gene encoding tau. Here we present a novel transgenic mouse strain (K3) that expresses(More)
Recent reports of autoantibodies that bind to neuronal surface receptors or synaptic proteins have defined treatable forms of autoimmune encephalitis. Despite these developments, many cases of encephalitis remain unexplained. We have previously described a basal ganglia encephalitis with dominant movement and psychiatric disease, and proposed an autoimmune(More)
Aggregation and increased phosphorylation of tau at selected sites ("hyperphosphorylation") are histopathological hallmarks of Alzheimer's disease (AD). However, it is not known whether the tau pathology has a primary role during neuronal degeneration. To determine the role of tau hyperphosphorylation in AD, pseudohyperphosphorylated tau (PHP-tau) that(More)
BACKGROUND The actin cytoskeleton is critically involved in the regulation of neurite outgrowth. RESULTS The actin cytoskeleton-associated protein tropomyosin induces neurite outgrowth in B35 neuroblastoma cells and regulates neurite branching in an isoform-dependent manner. CONCLUSIONS Our data indicate that tropomyosins are key regulators of the actin(More)
The microtubule-associated tau proteins represent a family of closely related phosphoproteins that become enriched in the axons during brain development. In Alzheimer's disease (AD), tau aggregates somatodendritically in paired helical filaments in a hyperphosphorylated form. Most of the sites that are phosphorylated to a high extent in paired helical(More)
BACKGROUND Alzheimer's disease (AD) is characterized by beta-amyloid (Abeta) peptide-containing plaques and tau-containing neurofibrillary tangles. By intracerebral injection of Abeta(42), both pathologies have been combined in P301L tau mutant mice. Furthermore, in cell culture, Abeta(42) induces tau aggregation. While both Abeta(42) and mutant tau cause(More)